{"title":"Synthesis of a spatially band-limited plane wave in the time-domain using wave field synthesis","authors":"Nara Hahn, F. Winter, S. Spors","doi":"10.23919/EUSIPCO.2017.8081292","DOIUrl":null,"url":null,"abstract":"Wave Field Synthesis (WFS) is a spatial sound reproduction technique aiming at a physically accurate reconstruction of a desired sound field within an extended listening area. It was shown in a recent study that the accuracy of the synthesized sound field can be improved in a local area by applying a spatial band-limitation to the driving function. However, the computational complexity of the frequency-domain driving function is demanding because of the involved Bessel functions. In this paper, a time-domain WFS driving function is introduced for the synthesis of a spatially band-limited plane wave. The driving function is obtained based on a time-domain representation of the sound field which is given as a superposition of plane waves with time-varying direction and amplitude. The performance of the proposed approach is evaluated by numerical simulations. Practical issues regarding the discretization of the analytic driving function and dynamic range control are discussed.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"163 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6
Abstract
Wave Field Synthesis (WFS) is a spatial sound reproduction technique aiming at a physically accurate reconstruction of a desired sound field within an extended listening area. It was shown in a recent study that the accuracy of the synthesized sound field can be improved in a local area by applying a spatial band-limitation to the driving function. However, the computational complexity of the frequency-domain driving function is demanding because of the involved Bessel functions. In this paper, a time-domain WFS driving function is introduced for the synthesis of a spatially band-limited plane wave. The driving function is obtained based on a time-domain representation of the sound field which is given as a superposition of plane waves with time-varying direction and amplitude. The performance of the proposed approach is evaluated by numerical simulations. Practical issues regarding the discretization of the analytic driving function and dynamic range control are discussed.