Event detection in underwater domain by exploiting fish trajectory clustering

MAED '12 Pub Date : 2012-11-02 DOI:10.1145/2390832.2390840
S. Palazzo, C. Spampinato, Cigdem Beyan
{"title":"Event detection in underwater domain by exploiting fish trajectory clustering","authors":"S. Palazzo, C. Spampinato, Cigdem Beyan","doi":"10.1145/2390832.2390840","DOIUrl":null,"url":null,"abstract":"In this paper we propose a clustering-based approach for the analysis of fish trajectories in real-life unconstrained underwater videos, with the purpose of detecting behavioural events; in such a context, both video quality limitations and the motion properties of the targets make the trajectory analysis task for event detection extremely difficult. Our approach is based on the k-means clustering algorithm and allows to group similar trajectories together, thus providing a simple way to detect the most used paths and the most visited areas, and, by contrast, to identify trajectories which do not fall into any common clusters, therefore representing unusual behaviours. Our results show that the proposed approach is able to separate trajectory patterns and to identify those matching predefined behaviours or which are more likely to be associated to new/anomalous behaviours.","PeriodicalId":173175,"journal":{"name":"MAED '12","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MAED '12","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2390832.2390840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In this paper we propose a clustering-based approach for the analysis of fish trajectories in real-life unconstrained underwater videos, with the purpose of detecting behavioural events; in such a context, both video quality limitations and the motion properties of the targets make the trajectory analysis task for event detection extremely difficult. Our approach is based on the k-means clustering algorithm and allows to group similar trajectories together, thus providing a simple way to detect the most used paths and the most visited areas, and, by contrast, to identify trajectories which do not fall into any common clusters, therefore representing unusual behaviours. Our results show that the proposed approach is able to separate trajectory patterns and to identify those matching predefined behaviours or which are more likely to be associated to new/anomalous behaviours.
基于鱼群轨迹聚类的水下事件检测
在本文中,我们提出了一种基于聚类的方法来分析现实生活中无约束水下视频中的鱼类轨迹,目的是检测行为事件;在这种情况下,视频质量的限制和目标的运动特性使得事件检测的轨迹分析任务非常困难。我们的方法基于k-means聚类算法,并允许将相似的轨迹分组在一起,从而提供了一种简单的方法来检测最常用的路径和访问最多的区域,并且,相比之下,识别不属于任何常见聚类的轨迹,因此代表不寻常的行为。我们的研究结果表明,所提出的方法能够分离轨迹模式,并识别那些匹配预定义行为或更可能与新/异常行为相关的轨迹模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信