Generalized Information Representation and Compression Using Covariance Union

Ottmar Bochardt, Ryan Calhoun, J. Uhlmann, S. Julier
{"title":"Generalized Information Representation and Compression Using Covariance Union","authors":"Ottmar Bochardt, Ryan Calhoun, J. Uhlmann, S. Julier","doi":"10.1109/ICIF.2006.301773","DOIUrl":null,"url":null,"abstract":"In this paper we consider the use of Covariance Union (CU) with multi-hypothesis techniques (MHT) and Gaussian mixture models (GMMs) to generalize the conventional mean and covariance representation of information. More specifically, we address the representation of multi-modal information using multiple mean and covariance estimates. A significant challenge is to define a rigorous fusion algorithm that can bind the complexity of the filtering process. This requires a mechanism for subsuming subsets of modes into single modes so that the complexity of the representation satisfies a specified upper bound. We discuss how this can be accomplished using CU. The practical challenge is to develop efficient implementations of the CU algorithm. Because of the novelty of the CU algorithm, there are no existing real-time codes for use in real applications. In this paper we address this deficiency by considering a general-purpose implementation of the CU algorithm based on general nonlinear optimization techniques. Computational results are reported","PeriodicalId":248061,"journal":{"name":"2006 9th International Conference on Information Fusion","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Information Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2006.301773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In this paper we consider the use of Covariance Union (CU) with multi-hypothesis techniques (MHT) and Gaussian mixture models (GMMs) to generalize the conventional mean and covariance representation of information. More specifically, we address the representation of multi-modal information using multiple mean and covariance estimates. A significant challenge is to define a rigorous fusion algorithm that can bind the complexity of the filtering process. This requires a mechanism for subsuming subsets of modes into single modes so that the complexity of the representation satisfies a specified upper bound. We discuss how this can be accomplished using CU. The practical challenge is to develop efficient implementations of the CU algorithm. Because of the novelty of the CU algorithm, there are no existing real-time codes for use in real applications. In this paper we address this deficiency by considering a general-purpose implementation of the CU algorithm based on general nonlinear optimization techniques. Computational results are reported
基于协方差联合的广义信息表示与压缩
在本文中,我们考虑使用协方差联合(CU)与多假设技术(MHT)和高斯混合模型(GMMs)来推广信息的传统均值和协方差表示。更具体地说,我们使用多个均值和协方差估计来处理多模态信息的表示。一个重要的挑战是定义一个严格的融合算法,可以绑定过滤过程的复杂性。这需要一种将模态子集纳入单个模态的机制,以便表示的复杂性满足指定的上界。我们将讨论如何使用CU来实现这一点。实际的挑战是开发CU算法的有效实现。由于CU算法的新颖性,目前还没有用于实际应用的实时代码。在本文中,我们通过考虑基于一般非线性优化技术的CU算法的通用实现来解决这一缺陷。报告了计算结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信