Cloud-assisted individual l1-pca face recognition using wavelet-domain compressed images

Federica Maritato, Y. Liu, S. Colonnese, D. Pados
{"title":"Cloud-assisted individual l1-pca face recognition using wavelet-domain compressed images","authors":"Federica Maritato, Y. Liu, S. Colonnese, D. Pados","doi":"10.1109/EUVIP.2016.7764600","DOIUrl":null,"url":null,"abstract":"Face recognition has been an active research field for a long time, and recently new challenges have arisen in designing cloud-assisted face recognition algorithms. In a cloud assisted face recognition system, mobile devices acquire the data images; then, in order to unbind the cloud face recognition algorithm from the particular features extracted at the mobile device, the images are encoded and uploladed into the cloud. In this framework, it is important to understand and control the effect of the image compression stage performed at the mobile device on the performances of the face recognition algorithms realized within the cloud. Here, we analyze the impact of wavelet domain image compression on the Individual Adaptive (IA) L1-PCA subspace computation and assess the performance of a classifier operating on data characterized by increasing compactness and accordingly decreasing accuracy.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Face recognition has been an active research field for a long time, and recently new challenges have arisen in designing cloud-assisted face recognition algorithms. In a cloud assisted face recognition system, mobile devices acquire the data images; then, in order to unbind the cloud face recognition algorithm from the particular features extracted at the mobile device, the images are encoded and uploladed into the cloud. In this framework, it is important to understand and control the effect of the image compression stage performed at the mobile device on the performances of the face recognition algorithms realized within the cloud. Here, we analyze the impact of wavelet domain image compression on the Individual Adaptive (IA) L1-PCA subspace computation and assess the performance of a classifier operating on data characterized by increasing compactness and accordingly decreasing accuracy.
基于小波域压缩图像的云辅助个体11 -pca人脸识别
长期以来,人脸识别一直是一个活跃的研究领域,近年来,云辅助人脸识别算法的设计出现了新的挑战。在云辅助人脸识别系统中,移动设备获取数据图像;然后,为了将云人脸识别算法与在移动设备上提取的特定特征解绑定,将图像编码并上传到云中。在这个框架中,理解和控制在移动设备上执行的图像压缩阶段对云中实现的人脸识别算法性能的影响是很重要的。在这里,我们分析了小波域图像压缩对个体自适应(IA) L1-PCA子空间计算的影响,并评估了一种分类器在紧凑度增加而准确性相应降低的数据上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信