CryptoCredit: securely training fair models

Leo de Castro, Jiahao Chen, Antigoni Polychroniadou
{"title":"CryptoCredit: securely training fair models","authors":"Leo de Castro, Jiahao Chen, Antigoni Polychroniadou","doi":"10.1145/3383455.3422567","DOIUrl":null,"url":null,"abstract":"When developing models for regulated decision making, sensitive features like age, race and gender cannot be used and must be obscured from model developers to prevent bias. However, the remaining features still need to be tested for correlation with sensitive features, which can only be done with the knowledge of those features. We resolve this dilemma using a fully homomorphic encryption scheme, allowing model developers to train linear regression and logistic regression models and test them for possible bias without ever revealing the sensitive features in the clear. We demonstrate how it can be applied to leave-one-out regression testing, and show using the adult income data set that our method is practical to run.","PeriodicalId":447950,"journal":{"name":"Proceedings of the First ACM International Conference on AI in Finance","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First ACM International Conference on AI in Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3383455.3422567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

When developing models for regulated decision making, sensitive features like age, race and gender cannot be used and must be obscured from model developers to prevent bias. However, the remaining features still need to be tested for correlation with sensitive features, which can only be done with the knowledge of those features. We resolve this dilemma using a fully homomorphic encryption scheme, allowing model developers to train linear regression and logistic regression models and test them for possible bias without ever revealing the sensitive features in the clear. We demonstrate how it can be applied to leave-one-out regression testing, and show using the adult income data set that our method is practical to run.
CryptoCredit:安全地训练公平模型
在为监管决策开发模型时,不能使用年龄、种族和性别等敏感特征,必须对模型开发人员进行模糊处理,以防止出现偏见。然而,剩下的特征仍然需要测试与敏感特征的相关性,这只能在了解这些特征的情况下完成。我们使用完全同态加密方案解决了这个难题,允许模型开发人员训练线性回归和逻辑回归模型,并测试它们是否存在可能的偏差,而无需在清晰的环境中揭示敏感特征。我们演示了如何将其应用于留一回归测试,并使用成人收入数据集显示我们的方法是实用的运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信