COSMOS: A System-Level Modelling and Simulation Framework for Coprocessor-Coupled Reconfigurable Systems

Kehuai Wu, J. Madsen
{"title":"COSMOS: A System-Level Modelling and Simulation Framework for Coprocessor-Coupled Reconfigurable Systems","authors":"Kehuai Wu, J. Madsen","doi":"10.1109/ICSAMOS.2007.4285743","DOIUrl":null,"url":null,"abstract":"Dynamically reconfigurable systems demand complicated run-time management. Due to resource constraints and reconfiguration latencies, efficient reconfiguration strategies that can reduce the overhead cost of dynamic reconfiguration need to be studied. In this paper, we i) propose a reconfigurable task model which extends the classical real-time task model to support the additional states and latencies needed to capture dynamically reconfigurable behavior, ii) propose a coprocessor- coupled reconfigurable architecture which has hardware runtime support for task execution, task reallocation and resource management, and iii) present a SystemC based framework to model and simulate coprocessor-coupled reconfigurable systems. We illustrate how COSMOS may be used to capture the dynamic behavior of such systems and emphasize the need for capturing the system aspects of such systems in order to deal with future design challenges of dynamically reconfigurable systems.","PeriodicalId":106933,"journal":{"name":"2007 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2007-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Embedded Computer Systems: Architectures, Modeling and Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSAMOS.2007.4285743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Dynamically reconfigurable systems demand complicated run-time management. Due to resource constraints and reconfiguration latencies, efficient reconfiguration strategies that can reduce the overhead cost of dynamic reconfiguration need to be studied. In this paper, we i) propose a reconfigurable task model which extends the classical real-time task model to support the additional states and latencies needed to capture dynamically reconfigurable behavior, ii) propose a coprocessor- coupled reconfigurable architecture which has hardware runtime support for task execution, task reallocation and resource management, and iii) present a SystemC based framework to model and simulate coprocessor-coupled reconfigurable systems. We illustrate how COSMOS may be used to capture the dynamic behavior of such systems and emphasize the need for capturing the system aspects of such systems in order to deal with future design challenges of dynamically reconfigurable systems.
COSMOS:协处理器耦合可重构系统的系统级建模与仿真框架
动态可重构系统需要复杂的运行时管理。由于资源约束和重构延迟,需要研究有效的重构策略,以降低动态重构的开销成本。在本文中,我们i)提出了一个可重构任务模型,它扩展了经典的实时任务模型,以支持捕获动态可重构行为所需的额外状态和延迟;ii)提出了一个协处理器耦合的可重构架构,该架构具有硬件运行时对任务执行、任务重新分配和资源管理的支持;iii)提出了一个基于SystemC的框架来建模和模拟协处理器耦合的可重构系统。我们说明了如何使用COSMOS来捕获此类系统的动态行为,并强调需要捕获此类系统的系统方面,以便处理动态可重构系统的未来设计挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信