Improving the performance of SVM-RFE on classification of pancreatic cancer data

Jiapeng Yin, Jian Hou, Zhiyong She, Chengming Yang, Han Yu
{"title":"Improving the performance of SVM-RFE on classification of pancreatic cancer data","authors":"Jiapeng Yin, Jian Hou, Zhiyong She, Chengming Yang, Han Yu","doi":"10.1109/ICIT.2016.7474881","DOIUrl":null,"url":null,"abstract":"Feature selection is a key step in classification of high-dimensional data, especially gene expression microarray data with many thousands of features. As a wrapper method, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of the most powerful feature selection techniques. Although SVM-RFE can remove irrelevant features effectively, it cannot deal with most of the redundant features. To overcome this drawback, this paper develops a new feature selection method, the core of which is removing redundant features based on the correlation among features before using SVM-RFE. We test the proposed method on the pancreatic cancer microarray dataset. The experimental results show that our method performs much better than the baseline SVM-RFE technique in terms of classification accuracy. To improve the class-wise classification accuracies, radial basis function (RBF) kernel is also incorporated.","PeriodicalId":116715,"journal":{"name":"2016 IEEE International Conference on Industrial Technology (ICIT)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Industrial Technology (ICIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2016.7474881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Feature selection is a key step in classification of high-dimensional data, especially gene expression microarray data with many thousands of features. As a wrapper method, Support Vector Machine-Recursive Feature Elimination (SVM-RFE) is one of the most powerful feature selection techniques. Although SVM-RFE can remove irrelevant features effectively, it cannot deal with most of the redundant features. To overcome this drawback, this paper develops a new feature selection method, the core of which is removing redundant features based on the correlation among features before using SVM-RFE. We test the proposed method on the pancreatic cancer microarray dataset. The experimental results show that our method performs much better than the baseline SVM-RFE technique in terms of classification accuracy. To improve the class-wise classification accuracies, radial basis function (RBF) kernel is also incorporated.
改进SVM-RFE对胰腺癌数据分类的性能
特征选择是高维数据分类的关键步骤,尤其是具有数千个特征的基因表达微阵列数据。支持向量机递归特征消除(SVM-RFE)作为一种包装方法,是最强大的特征选择技术之一。尽管SVM-RFE可以有效地去除不相关的特征,但它不能处理大多数冗余特征。为了克服这一缺点,本文提出了一种新的特征选择方法,其核心是在使用SVM-RFE之前,根据特征之间的相关性去除冗余特征。我们在胰腺癌微阵列数据集上测试了所提出的方法。实验结果表明,我们的方法在分类精度方面明显优于基线SVM-RFE技术。为了提高分类精度,还引入了径向基函数(RBF)核。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信