Bi-Sep: A Multi-Resolution Cross-Domain Monaural Speech Separation Framework

Kuan-Hsun Ho, J. Hung, Berlin Chen
{"title":"Bi-Sep: A Multi-Resolution Cross-Domain Monaural Speech Separation Framework","authors":"Kuan-Hsun Ho, J. Hung, Berlin Chen","doi":"10.1109/TAAI57707.2022.00022","DOIUrl":null,"url":null,"abstract":"In recent years, deep neural network (DNN)-based time-domain methods for monaural speech separation have substantially improved under an anechoic condition. However, the performance of these methods degrades when facing harsher conditions, such as noise or reverberation. Although adopting Short-Time Fourier Transform (STFT) for feature extraction of these neural methods helps stabilize the performance in non-anechoic situations, it inherently loses the fine-grained vision, which is one of the particularities of time-domain methods. Therefore, this study explores incorporating time and STFT-domain features to retain their beneficial characteristics. Furthermore, we leverage a Bi-Projection Fusion (BPF) mechanism to merge the information between two domains. To evaluate the effectiveness of our proposed method, we conduct experiments in an anechoic setting on the WSJ0-2mix dataset and noisy/reverberant settings on WHAM!/WHAMR! dataset. The experiment shows that with a cost of ignorable degradation on anechoic dataset, the proposed method manages to promote the performance of existing neural models when facing more complicated environments.","PeriodicalId":111620,"journal":{"name":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Technologies and Applications of Artificial Intelligence (TAAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAAI57707.2022.00022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, deep neural network (DNN)-based time-domain methods for monaural speech separation have substantially improved under an anechoic condition. However, the performance of these methods degrades when facing harsher conditions, such as noise or reverberation. Although adopting Short-Time Fourier Transform (STFT) for feature extraction of these neural methods helps stabilize the performance in non-anechoic situations, it inherently loses the fine-grained vision, which is one of the particularities of time-domain methods. Therefore, this study explores incorporating time and STFT-domain features to retain their beneficial characteristics. Furthermore, we leverage a Bi-Projection Fusion (BPF) mechanism to merge the information between two domains. To evaluate the effectiveness of our proposed method, we conduct experiments in an anechoic setting on the WSJ0-2mix dataset and noisy/reverberant settings on WHAM!/WHAMR! dataset. The experiment shows that with a cost of ignorable degradation on anechoic dataset, the proposed method manages to promote the performance of existing neural models when facing more complicated environments.
一种多分辨率跨域单音语音分离框架
近年来,基于深度神经网络(DNN)的时域单耳语音分离方法在消声条件下有了很大的改进。然而,当面对更恶劣的条件时,例如噪音或混响,这些方法的性能会下降。虽然采用短时傅里叶变换(STFT)对这些神经方法进行特征提取有助于稳定非消声情况下的性能,但它固有地失去了细粒度视觉,这是时域方法的特点之一。因此,本研究探索结合时间和stft域特征以保留其有益的特征。此外,我们利用双投影融合(BPF)机制来合并两个域之间的信息。为了评估我们提出的方法的有效性,我们在WSJ0-2mix数据集上进行了消声设置实验,并在WHAM!/WHAMR!数据集。实验表明,该方法以可忽略的退化代价在消声数据集上提高了现有神经模型在更复杂环境下的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信