Classification of EEG signals based on CNN-Transformer model

Jianwei Liu, Enzeng Dong, Jigang Tong, Sen Yang, Shengzhi Du
{"title":"Classification of EEG signals based on CNN-Transformer model","authors":"Jianwei Liu, Enzeng Dong, Jigang Tong, Sen Yang, Shengzhi Du","doi":"10.1109/ICMA57826.2023.10215899","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCI) based on EEG have attracted extensive research and attention worldwide, while motor imagery (MI), mental arithmetic (MA), and P300 event-related potentials are a few of the more commonly used paradigms.Vision Transformer(ViT) is a new Transformer model that has superior global processing power compared to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).In this study, we propose a hybrid CNN-Transformer based model that uses CNN to convolve EEG signals in time and space, followed by ViT for global processing, and finally optimizes the model using 10-run $\\times 10$-fold cross-validation and validates it on a publicly available dataset of 29 subjects. Final accuracies of 87.23% and 90.79% were achieved on the MI and MA tasks, respectively. Compared to other literature, the model achieved higher classification accuracies.","PeriodicalId":151364,"journal":{"name":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Mechatronics and Automation (ICMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA57826.2023.10215899","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Brain-computer interfaces (BCI) based on EEG have attracted extensive research and attention worldwide, while motor imagery (MI), mental arithmetic (MA), and P300 event-related potentials are a few of the more commonly used paradigms.Vision Transformer(ViT) is a new Transformer model that has superior global processing power compared to Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN).In this study, we propose a hybrid CNN-Transformer based model that uses CNN to convolve EEG signals in time and space, followed by ViT for global processing, and finally optimizes the model using 10-run $\times 10$-fold cross-validation and validates it on a publicly available dataset of 29 subjects. Final accuracies of 87.23% and 90.79% were achieved on the MI and MA tasks, respectively. Compared to other literature, the model achieved higher classification accuracies.
基于CNN-Transformer模型的脑电信号分类
基于脑电图(EEG)的脑机接口(BCI)在世界范围内引起了广泛的研究和关注,其中运动想象(MI)、心算(MA)和P300事件相关电位是比较常用的几种模式。视觉变压器(Vision Transformer, ViT)是一种新的变压器模型,与卷积神经网络(CNN)和递归神经网络(RNN)相比,它具有更强的全局处理能力。在这项研究中,我们提出了一个基于CNN- transformer的混合模型,该模型使用CNN对EEG信号进行时间和空间卷积,然后使用ViT进行全局处理,最后使用10次× 10次交叉验证对模型进行优化,并在公开可用的29个受试者数据集上进行验证。MI和MA任务的最终准确率分别为87.23%和90.79%。与其他文献相比,该模型实现了更高的分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信