Negar Reiskarimian, Mahmood Baraani Dastjerdi, Jin Zhou, H. Krishnaswamy
{"title":"18.2 Highly-linear integrated magnetic-free circulator-receiver for full-duplex wireless","authors":"Negar Reiskarimian, Mahmood Baraani Dastjerdi, Jin Zhou, H. Krishnaswamy","doi":"10.1109/ISSCC.2017.7870388","DOIUrl":null,"url":null,"abstract":"A fundamental challenge of full-duplex (FD) wireless [1] is the implementation of low-cost, small-form-factor, integrated shared-antenna (ANT) interfaces with low loss, low noise, high TX-RX isolation, and large TX power handling. Providing more TX-RX isolation in the ANT interface that is robust to environmental variations lowers the self-interference cancellation (SIC) and dynamic range required in the RF, analog baseband (BB), and digital domains. Reciprocal shared-ANT interfaces, such as electrical-balance duplexers [2], fundamentally feature at least 3dB loss (practically >4dB). A non-reciprocal active shared-ANT duplexing scheme was demonstrated in [3], but such active approaches are limited in their maximum supported TX power (−17.3dBm in [3] limited by RX compression) and noise performance. An integrated FD RX with a magnetic-free non-reciprocal passive circulator was demonstrated in [4]. Despite the circulator's low loss and relatively high linearity, the RX could only handle up to −7dBm TX power due to limited circulator isolation and RX LNA linearity. NF under cancellation was also as high as 10.9dB.","PeriodicalId":269679,"journal":{"name":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"57","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Solid-State Circuits Conference (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2017.7870388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 57
Abstract
A fundamental challenge of full-duplex (FD) wireless [1] is the implementation of low-cost, small-form-factor, integrated shared-antenna (ANT) interfaces with low loss, low noise, high TX-RX isolation, and large TX power handling. Providing more TX-RX isolation in the ANT interface that is robust to environmental variations lowers the self-interference cancellation (SIC) and dynamic range required in the RF, analog baseband (BB), and digital domains. Reciprocal shared-ANT interfaces, such as electrical-balance duplexers [2], fundamentally feature at least 3dB loss (practically >4dB). A non-reciprocal active shared-ANT duplexing scheme was demonstrated in [3], but such active approaches are limited in their maximum supported TX power (−17.3dBm in [3] limited by RX compression) and noise performance. An integrated FD RX with a magnetic-free non-reciprocal passive circulator was demonstrated in [4]. Despite the circulator's low loss and relatively high linearity, the RX could only handle up to −7dBm TX power due to limited circulator isolation and RX LNA linearity. NF under cancellation was also as high as 10.9dB.