Improved particle swarm optimization algorithm

Zhou Han-chang
{"title":"Improved particle swarm optimization algorithm","authors":"Zhou Han-chang","doi":"10.1109/iccsnt.2011.6182027","DOIUrl":null,"url":null,"abstract":"To improve full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm, based on classical PSO algorithm and quanta theory, an improved PSO algorithm with quantum behavior--cQPSO algorithm is proposed. Identical particle system is introduced to update the position of particle and chaos thought is introduced to chaotic search every particle, accordingly improving the full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm. The experimental results of classical function show that capability of improved algorithm is superior to classical PSO algorithm and PSO algorithm with quantum behavior.","PeriodicalId":365328,"journal":{"name":"Computer Engineering and Design","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Engineering and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccsnt.2011.6182027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

To improve full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm, based on classical PSO algorithm and quanta theory, an improved PSO algorithm with quantum behavior--cQPSO algorithm is proposed. Identical particle system is introduced to update the position of particle and chaos thought is introduced to chaotic search every particle, accordingly improving the full searching ability, local searching ability, convergence rate and calculating precision of elementary particle swarm. The experimental results of classical function show that capability of improved algorithm is superior to classical PSO algorithm and PSO algorithm with quantum behavior.
改进的粒子群优化算法
为了提高基本粒子群的全搜索能力、局部搜索能力、收敛速度和计算精度,在经典粒子群算法和量子理论的基础上,提出了一种具有量子行为的改进粒子群算法——cQPSO算法。引入相同粒子系统更新粒子位置,引入混沌思想对每个粒子进行混沌搜索,从而提高了基本粒子群的全搜索能力、局部搜索能力、收敛速度和计算精度。经典函数的实验结果表明,改进算法的性能优于经典粒子群算法和具有量子行为的粒子群算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信