{"title":"A Multi-Kernel Local Level Set Image Segmentation Algorithm for Fluorescence Microscopy Images","authors":"A. Gharipour, Alan Wee-Chung Liew","doi":"10.1109/DICTA.2015.7371218","DOIUrl":null,"url":null,"abstract":"Fluorescence microscopy image segmentation is a central task in high-throughput applications such as protein expression quantification and cell function investigation. In this paper, a multiple kernel local level set segmentation algorithm is introduced as a framework for fluorescence microscopy cell image segmentation. In this framework, a new local region-based active contour model in a variational level set formulation based on the piecewise constant model and multiple kernels mapping is proposed where a linear combination of multiple kernels is utilized to implicitly map the original local image data into data of a higher dimension. We evaluate the performance of the proposed method using a large number of fluorescence microscopy images. A quantitative comparison is also performed with some state-of-the-art segmentation approaches.","PeriodicalId":214897,"journal":{"name":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2015.7371218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Fluorescence microscopy image segmentation is a central task in high-throughput applications such as protein expression quantification and cell function investigation. In this paper, a multiple kernel local level set segmentation algorithm is introduced as a framework for fluorescence microscopy cell image segmentation. In this framework, a new local region-based active contour model in a variational level set formulation based on the piecewise constant model and multiple kernels mapping is proposed where a linear combination of multiple kernels is utilized to implicitly map the original local image data into data of a higher dimension. We evaluate the performance of the proposed method using a large number of fluorescence microscopy images. A quantitative comparison is also performed with some state-of-the-art segmentation approaches.