Optimizing the Number of States for HMM-Based On-line Handwritten Whiteboard Recognition

Jürgen T. Geiger, J. Schenk, F. Wallhoff, G. Rigoll
{"title":"Optimizing the Number of States for HMM-Based On-line Handwritten Whiteboard Recognition","authors":"Jürgen T. Geiger, J. Schenk, F. Wallhoff, G. Rigoll","doi":"10.1109/ICFHR.2010.23","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel way to determine the number of states in Hidden-Markov-Models for on-line handwriting recognition. This method extends the Bakis length modeling method which has succesfully been applied to off-line handwriting recognition. We propose a modification to the Bakis method and present a technique to improve the topology with a small number of iterations. Furthermore, we investigate the influence of state tying. In an experimental section, we show that our improved system outperforms a system with Bakis length modeling by 1.5 % relative and with fixed length modeling by 5.1 % relative on the IAM-On-DB-t1 benchmark.","PeriodicalId":335044,"journal":{"name":"2010 12th International Conference on Frontiers in Handwriting Recognition","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 12th International Conference on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFHR.2010.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

In this paper, we present a novel way to determine the number of states in Hidden-Markov-Models for on-line handwriting recognition. This method extends the Bakis length modeling method which has succesfully been applied to off-line handwriting recognition. We propose a modification to the Bakis method and present a technique to improve the topology with a small number of iterations. Furthermore, we investigate the influence of state tying. In an experimental section, we show that our improved system outperforms a system with Bakis length modeling by 1.5 % relative and with fixed length modeling by 5.1 % relative on the IAM-On-DB-t1 benchmark.
基于hmm的在线手写白板识别状态数优化
本文提出了一种确定在线手写识别中隐马尔可夫模型状态数的新方法。该方法是对已成功应用于离线手写识别的Bakis长度建模方法的扩展。我们对Bakis方法进行了改进,提出了一种利用少量迭代改进拓扑结构的技术。此外,我们还研究了状态捆绑的影响。在实验部分,我们证明了我们改进的系统在IAM-On-DB-t1基准上比具有Bakis长度建模的系统相对高出1.5%,比具有固定长度建模的系统相对高出5.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信