Maximum likelihood detection for decode and forward cooperation with interference

Y. Aditya, G. V. S. S. P. Varma, G. Sharma
{"title":"Maximum likelihood detection for decode and forward cooperation with interference","authors":"Y. Aditya, G. V. S. S. P. Varma, G. Sharma","doi":"10.1109/NCC.2015.7084814","DOIUrl":null,"url":null,"abstract":"In this paper, we obtain the maximum likelihood (ML) decision for a decode and forward (DF) cooperative system in Nakagami-m fading in the presence of co-channel interference at the relay as well as the destination. Through simulation results, we first show that conventional ML designed for interference free systems fails to combat the deleterious effect of interference. An optimum ML decision for combating interference is then derived for integer m. This receiver is shown to be superior to conventional ML through bit error rate (BER) performance simulations. Further, our results also indicate that optimum ML preserves relay diversity in the presence of interference.","PeriodicalId":302718,"journal":{"name":"2015 Twenty First National Conference on Communications (NCC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Twenty First National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2015.7084814","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we obtain the maximum likelihood (ML) decision for a decode and forward (DF) cooperative system in Nakagami-m fading in the presence of co-channel interference at the relay as well as the destination. Through simulation results, we first show that conventional ML designed for interference free systems fails to combat the deleterious effect of interference. An optimum ML decision for combating interference is then derived for integer m. This receiver is shown to be superior to conventional ML through bit error rate (BER) performance simulations. Further, our results also indicate that optimum ML preserves relay diversity in the presence of interference.
最大似然检测解码和向前合作与干扰
在本文中,我们得到了一个解码和转发(DF)合作系统在中继和目的地存在共信道干扰的情况下在Nakagami-m衰落下的最大似然决策。通过仿真结果,我们首先表明,为无干扰系统设计的传统机器学习无法对抗干扰的有害影响。然后推导了整数m的最佳ML决策,以对抗干扰。通过误码率(BER)性能模拟,表明该接收器优于传统ML。此外,我们的结果还表明,在存在干扰的情况下,最佳ML保留了中继分集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信