Truncated Newton's method for multiphase flow

Anthony J. Kearsley
{"title":"Truncated Newton's method for multiphase flow","authors":"Anthony J. Kearsley","doi":"10.1109/CCSII.2012.6470495","DOIUrl":null,"url":null,"abstract":"A system of nonlinear transient partial differential equations coupled with nonlinear algebraic constitutive relationships are employed to model the flow of two immiscible fluids. A fully stable implicit time stepping and a spatial finite element discretization results in a large stiff nonlinear system of algebraic equations to be solved at each time step. The differential operators involved are self-adjoint, but the use of Newton-type solution methods requires the solution of a system of non-symmetric linear equations to calculate each Newton step. This paper describes an inexact solution to the problem of calculating the Newton step.","PeriodicalId":389895,"journal":{"name":"2012 IEEE Conference on Control, Systems & Industrial Informatics","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Conference on Control, Systems & Industrial Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCSII.2012.6470495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A system of nonlinear transient partial differential equations coupled with nonlinear algebraic constitutive relationships are employed to model the flow of two immiscible fluids. A fully stable implicit time stepping and a spatial finite element discretization results in a large stiff nonlinear system of algebraic equations to be solved at each time step. The differential operators involved are self-adjoint, but the use of Newton-type solution methods requires the solution of a system of non-symmetric linear equations to calculate each Newton step. This paper describes an inexact solution to the problem of calculating the Newton step.
多相流的截断牛顿法
采用非线性瞬态偏微分方程组和非线性代数本构关系来模拟两种非混相流体的流动。完全稳定隐式时间步进和空间有限元离散化导致在每个时间步上求解一个大的刚性非线性代数方程组。所涉及的微分算子是自伴随的,但使用牛顿型解方法需要求解一个非对称线性方程组来计算每个牛顿步。本文描述了计算牛顿步长问题的一个不精确解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信