{"title":"An optimization method for selecting parameters in support vector machines","authors":"Yulin Dong, Manghui Tu, Zhonghang Xia, Guangming Xing","doi":"10.1109/ICMLA.2007.38","DOIUrl":null,"url":null,"abstract":"It has been shown that the cost parameters and kernel parameters are critical in the performance of support vector machines (SVMs). A standard parameter selection method compares parameters among a discrete set of values, called the candidate set, and picks the one which has the best classification accuracy. As a result, the choice of parameters strongly depends on the pre-defined candidate set. In this paper, we formulate the selection of the cost parameter and kernel parameter as a two-level optimization problem, in which the values of parameters vary continuously and thus optimization techniques can be applied to select ideal parameters. Due to the non-smoothness of the objective function in our model, a genetic algorithm has been presented. Numerical results show that the two-level approach can significantly improve the performance of SVM classifier in terms of classification accuracy.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
It has been shown that the cost parameters and kernel parameters are critical in the performance of support vector machines (SVMs). A standard parameter selection method compares parameters among a discrete set of values, called the candidate set, and picks the one which has the best classification accuracy. As a result, the choice of parameters strongly depends on the pre-defined candidate set. In this paper, we formulate the selection of the cost parameter and kernel parameter as a two-level optimization problem, in which the values of parameters vary continuously and thus optimization techniques can be applied to select ideal parameters. Due to the non-smoothness of the objective function in our model, a genetic algorithm has been presented. Numerical results show that the two-level approach can significantly improve the performance of SVM classifier in terms of classification accuracy.