Beyond Godel

C. Wright
{"title":"Beyond Godel","authors":"C. Wright","doi":"10.2139/ssrn.3147440","DOIUrl":null,"url":null,"abstract":"In this paper, we start by defining the basic predicate systems used by Gödel in his logical constructions for the creation of a system of computable mathematics. We demonstrate how each of these predicates and the primitive recursive functions can be mapped directly into bitcoin script operations. This is then extended to explore the dual stack 2PDA construction within bitcoin. In this paper we use this extension to demonstrate how the integration of these functions across a dual stack push down automata (2PDA) allows us to create a system that is equivalent to a Turing machine and which can hence handle all grammatical constructs that may be processed within a Turing machine. The function and operation of the bitcoin operational codes and the construction of the stacks leads to different operational conditions than a standard Turing machine, however, it is also noted how this differs from a standard modern registered machine in operation. Ignoring stack limitations we can then see that any computable function may be integrated into operation and solution within bitcoin scripts.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3147440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we start by defining the basic predicate systems used by Gödel in his logical constructions for the creation of a system of computable mathematics. We demonstrate how each of these predicates and the primitive recursive functions can be mapped directly into bitcoin script operations. This is then extended to explore the dual stack 2PDA construction within bitcoin. In this paper we use this extension to demonstrate how the integration of these functions across a dual stack push down automata (2PDA) allows us to create a system that is equivalent to a Turing machine and which can hence handle all grammatical constructs that may be processed within a Turing machine. The function and operation of the bitcoin operational codes and the construction of the stacks leads to different operational conditions than a standard Turing machine, however, it is also noted how this differs from a standard modern registered machine in operation. Ignoring stack limitations we can then see that any computable function may be integrated into operation and solution within bitcoin scripts.
在本文中,我们首先定义了Gödel在其创建可计算数学系统的逻辑结构中使用的基本谓词系统。我们将演示如何将这些谓词和基本递归函数直接映射到比特币脚本操作中。然后扩展到探索比特币内的双堆栈2PDA构造。在本文中,我们使用这个扩展来演示如何跨双堆栈下推自动机(2PDA)集成这些功能,使我们能够创建一个相当于图灵机的系统,从而可以处理所有可能在图灵机中处理的语法结构。比特币操作代码的功能和操作以及堆栈的结构导致了与标准图灵机不同的操作条件,然而,也注意到这与标准的现代注册机器在操作中的不同之处。忽略堆栈限制,我们可以看到任何可计算函数都可以集成到比特币脚本中的操作和解决方案中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信