Felix Bartusch, Maximilian Hanussek, Jens Krüger, O. Kohlbacher
{"title":"Reproducible Scientific Workflows for High Performance and Cloud Computing","authors":"Felix Bartusch, Maximilian Hanussek, Jens Krüger, O. Kohlbacher","doi":"10.1109/CCGRID.2019.00028","DOIUrl":null,"url":null,"abstract":"Many complex data analysis tasks are performed by scientific workflows and pipelines deployed on high performance computing (HPC) or cloud computing resources. The complex software stack required by a workflow and unnoticed dependencies can make the deployment of a pipeline a demanding task. Once deployed, workflows tend to be black boxes, especially for users that did not create the pipeline themselves. At the end of a project a researcher should archive the pipeline in order to ensure reproducibility of published results. This paper illustrates a possible solution for each of the three tasks: reproducible deployment via software containers, automated generation of provenance information to break black boxes, and using the CiTAR service for archiving software containers.","PeriodicalId":234571,"journal":{"name":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGRID.2019.00028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Many complex data analysis tasks are performed by scientific workflows and pipelines deployed on high performance computing (HPC) or cloud computing resources. The complex software stack required by a workflow and unnoticed dependencies can make the deployment of a pipeline a demanding task. Once deployed, workflows tend to be black boxes, especially for users that did not create the pipeline themselves. At the end of a project a researcher should archive the pipeline in order to ensure reproducibility of published results. This paper illustrates a possible solution for each of the three tasks: reproducible deployment via software containers, automated generation of provenance information to break black boxes, and using the CiTAR service for archiving software containers.