A CNN-based Quality Model for Image Interpolation

Yuting Lin, Wei Liu, Xiaowen Cai, Weiling Chen, Lanlan Li, Chengdong Lan
{"title":"A CNN-based Quality Model for Image Interpolation","authors":"Yuting Lin, Wei Liu, Xiaowen Cai, Weiling Chen, Lanlan Li, Chengdong Lan","doi":"10.1109/CSRSWTC50769.2020.9372617","DOIUrl":null,"url":null,"abstract":"Image interpolation techniques have aroused wide attention, which is dedicated to improving the resolution of image and providing a better visual perception. However, how to evaluate the perceptual quality of interpolated images is still an ongoing problem. In this paper, a no-reference method built on Convolutional Neural Network (CNN) is proposed for interpolated image quality assessment. To enhance the performance, we incorporate attention modules with the proposed network to facilitate feature extraction and quality prediction. Experimental results show that the proposed method outperforms related IQA metrics in perceptual quality evaluation of image interpolation.","PeriodicalId":207010,"journal":{"name":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Cross Strait Radio Science & Wireless Technology Conference (CSRSWTC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSRSWTC50769.2020.9372617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Image interpolation techniques have aroused wide attention, which is dedicated to improving the resolution of image and providing a better visual perception. However, how to evaluate the perceptual quality of interpolated images is still an ongoing problem. In this paper, a no-reference method built on Convolutional Neural Network (CNN) is proposed for interpolated image quality assessment. To enhance the performance, we incorporate attention modules with the proposed network to facilitate feature extraction and quality prediction. Experimental results show that the proposed method outperforms related IQA metrics in perceptual quality evaluation of image interpolation.
基于cnn的图像插值质量模型
图像插值技术已经引起了广泛的关注,它致力于提高图像的分辨率,提供更好的视觉感受。然而,如何评价插值图像的感知质量仍然是一个有待解决的问题。本文提出了一种基于卷积神经网络(CNN)的无参考插值图像质量评价方法。为了提高性能,我们将注意力模块与所提出的网络结合起来,以方便特征提取和质量预测。实验结果表明,该方法在图像插值的感知质量评价方面优于相关的IQA指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信