Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods

Joon-gi Park, Seoungwoo Byun, Williams Agyei Appiah, Sekyung Han, J. Choi, Myung-Hyun Ryou, Y. Lee
{"title":"Computational Simulation on Power Prediction of Lithium Secondary Batteries by using Pulse-based Measurement Methods","authors":"Joon-gi Park, Seoungwoo Byun, Williams Agyei Appiah, Sekyung Han, J. Choi, Myung-Hyun Ryou, Y. Lee","doi":"10.18770/KEPCO.2015.01.01.033","DOIUrl":null,"url":null,"abstract":"시간대별 효율적인 전력 운영과 전력품질 향상을 위해 ESS (Energy Storage System)의 보급이 세계적으로 활발하 게 이루어지고 있다. 이러한 ESS용 전원소자로 리튬이차전지의 채용이 급격히 늘어남에 따라, 리튬이차전지의 수명 및 출력 열화 거동을 측정 및 예측하는 기술이 시급히 요구되고 있다. 특히, ESS 운영에 있어 핵심 특성인 리튬이차 전지 출력은 측정이 어려울 뿐만 아니라, 정확한 측정을 위해서는 많은 시간이 소요되는 문제점이 있다. 따라서, 본 연구에서는 ESS용 리튬이차전지 단전지를 전산 모델링 한 후, 펄스 측정법을 적용하여 충전상태에 따른 방전 및 충 전시의 직류저항(DC-IR)과 출력을 예측한다. 또한, 두 가지 펄스 측정법인 HPPC (Hybrid Pulse Power Characteristics)와 J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)의 결과를 비교 분석한다. Energy storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality. As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior. In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities. Due to these difficulties, computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-based measurement methods. Moreover, based on the hybrid pulse power characteristics (HPPC) and J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods, their electrochemical properties are also compared and discussed. Keyword: Energy Storage System, Lithium Secondary Battery, Computer Modeling, Computational Simulation, Power","PeriodicalId":445819,"journal":{"name":"KEPCO Journal on electric power and energy","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KEPCO Journal on electric power and energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18770/KEPCO.2015.01.01.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

시간대별 효율적인 전력 운영과 전력품질 향상을 위해 ESS (Energy Storage System)의 보급이 세계적으로 활발하 게 이루어지고 있다. 이러한 ESS용 전원소자로 리튬이차전지의 채용이 급격히 늘어남에 따라, 리튬이차전지의 수명 및 출력 열화 거동을 측정 및 예측하는 기술이 시급히 요구되고 있다. 특히, ESS 운영에 있어 핵심 특성인 리튬이차 전지 출력은 측정이 어려울 뿐만 아니라, 정확한 측정을 위해서는 많은 시간이 소요되는 문제점이 있다. 따라서, 본 연구에서는 ESS용 리튬이차전지 단전지를 전산 모델링 한 후, 펄스 측정법을 적용하여 충전상태에 따른 방전 및 충 전시의 직류저항(DC-IR)과 출력을 예측한다. 또한, 두 가지 펄스 측정법인 HPPC (Hybrid Pulse Power Characteristics)와 J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)의 결과를 비교 분석한다. Energy storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality. As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior. In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities. Due to these difficulties, computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-based measurement methods. Moreover, based on the hybrid pulse power characteristics (HPPC) and J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods, their electrochemical properties are also compared and discussed. Keyword: Energy Storage System, Lithium Secondary Battery, Computer Modeling, Computational Simulation, Power
基于脉冲测量方法的锂二次电池功率预测计算仿真
为了各时间段的电力运营和电力品质的提高,ESS (Energy Storage System)的普及在世界范围内非常活跃。随着锂电池作为ESS用电源元件的采用急剧增加,测定和预测锂电池寿命及输出劣化行为的技术迫在眉睫。特别是,在ESS运营过程中,锂电池的核心特性不仅很难测定,而且要想正确测定,还需要很长时间。因此,本研究对ESS用锂电池电池进行计算机建模后,利用脉冲测定法预测放电及充电时的直流电阻(DC-IR)和输出。另外,对两种脉冲测量法HPPC (Hybrid Pulse Power Characteristics)和J-Pulse (JEVS D 713, Japan Electric Vehicle Association Standards)的结果进行比较分析。能源storage systems (ESSs) have been utilized widely in the world to optimize the power operation system and to improve the power quality。As lithium secondary batteries are the main power supplier for ESSs, it is very important to predict its cycle and power degradation behavior。In particular, the power, one of the hardest electrochemical properties to measure, needs lots of resources such as time and facilities。due to these difficulties,computer modelling of lithium secondary batteries is applied to predict the DC-IR and power value during charging and discharging as a function of state of charge (SOC) by using pulse-basedmeasurement methods。Moreover, based on the hybrid pulse power characteristics (HPPC) and J- pulse (JEVS D 713, Japan Electric Vehicle Association Standards) methods;their electrochemical properties are also compared and discussed。Keyword: Energy Storage System, Lithium Secondary Battery, Computer Modeling, Computational Simulation, Power
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信