cKGSA Based Fuzzy Clustering Method for Image Segmentation of RGB-D Images

H. Mittal, M. Saraswat
{"title":"cKGSA Based Fuzzy Clustering Method for Image Segmentation of RGB-D Images","authors":"H. Mittal, M. Saraswat","doi":"10.1109/IC3.2018.8530568","DOIUrl":null,"url":null,"abstract":"With the introduction of low-cost depth image sensors, reliable image segmentation within RGB-D images is an ambitious goal of computer vision. However, in a cluttered scene, image segmentation has become a challenging problem. This paper presents a novel RGB-D image segmentation method, chaotic kbest gravitational search algorithm based fuzzy clustering (cKGSA-FC). First, the proposed method performs fuzzy clustering using cKGSA on different parameters and feature subsets to obtain multiple optimal clusters. Next, the proposed method combines the multiple clusters through the segmentation by aggregating superpixels (SAS) method on different combinations to generate the final segmentation result. The proposed method is evaluated on the standard RGB-D indoor image dataset namely; NYU depth v2 (NYUD2) and compared with the results obtained by performing fuzzy clustering through three existing clustering methods namely; gravitational search algorithm, fuzzy c-means, and kmeans. The evaluation of the results is done in terms of qualitative and quantitative. Experimental results confirm that the segmentation quality of the proposed method is superior than the compared methods.","PeriodicalId":118388,"journal":{"name":"2018 Eleventh International Conference on Contemporary Computing (IC3)","volume":"01 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eleventh International Conference on Contemporary Computing (IC3)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC3.2018.8530568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

With the introduction of low-cost depth image sensors, reliable image segmentation within RGB-D images is an ambitious goal of computer vision. However, in a cluttered scene, image segmentation has become a challenging problem. This paper presents a novel RGB-D image segmentation method, chaotic kbest gravitational search algorithm based fuzzy clustering (cKGSA-FC). First, the proposed method performs fuzzy clustering using cKGSA on different parameters and feature subsets to obtain multiple optimal clusters. Next, the proposed method combines the multiple clusters through the segmentation by aggregating superpixels (SAS) method on different combinations to generate the final segmentation result. The proposed method is evaluated on the standard RGB-D indoor image dataset namely; NYU depth v2 (NYUD2) and compared with the results obtained by performing fuzzy clustering through three existing clustering methods namely; gravitational search algorithm, fuzzy c-means, and kmeans. The evaluation of the results is done in terms of qualitative and quantitative. Experimental results confirm that the segmentation quality of the proposed method is superior than the compared methods.
基于cKGSA的RGB-D图像模糊聚类分割方法
随着低成本深度图像传感器的引入,可靠的RGB-D图像分割是计算机视觉的一个雄心勃勃的目标。然而,在混乱的场景中,图像分割成为一个具有挑战性的问题。提出了一种新的RGB-D图像分割方法——基于模糊聚类的混沌kbest引力搜索算法(cKGSA-FC)。首先,利用cKGSA对不同参数和特征子集进行模糊聚类,得到多个最优聚类;接下来,该方法通过对不同组合的超像素聚合(SAS)方法进行分割,将多个聚类组合在一起,生成最终的分割结果。在标准RGB-D室内图像数据集上对该方法进行了评估:NYU depth v2 (NYUD2),并与现有三种聚类方法进行模糊聚类得到的结果进行比较,即;引力搜索算法,模糊c-means和kmeans。从定性和定量两方面对结果进行评价。实验结果表明,该方法的分割质量优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信