Unsupervised Segmentation of Smart Home Logs for Human Habit Discovery

Lucia Esposito, F. Leotta, Massimo Mecella, Silvestro V. Veneruso
{"title":"Unsupervised Segmentation of Smart Home Logs for Human Habit Discovery","authors":"Lucia Esposito, F. Leotta, Massimo Mecella, Silvestro V. Veneruso","doi":"10.1109/ie54923.2022.9826776","DOIUrl":null,"url":null,"abstract":"Smart homes represent examples of cyber-physical environments realizing the paradigm known as ambient intelligence. An information system supporting ambient intelligence takes as input raw sensor measurements and analyzes them to eventually make decisions following final user preferences. Unfortunately, algorithms in this research area are mostly supervised, thus requiring a manual labeling of training instances usually involving final users in annoying and imprecise training sessions. In this paper, we propose a methodology allowing, given a sensor log, to automatically segment human habits by applying a bottom-up discretization strategy to the timestamp attribute of the sensor log. In particular, we show how classical quality measures, computed over Petri nets automatically mined from sensor logs filtered by timestamp, can be used as an heuristic to drive the discretization process, thus providing a likely subdivision of the day in human habits.","PeriodicalId":157754,"journal":{"name":"2022 18th International Conference on Intelligent Environments (IE)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 18th International Conference on Intelligent Environments (IE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ie54923.2022.9826776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Smart homes represent examples of cyber-physical environments realizing the paradigm known as ambient intelligence. An information system supporting ambient intelligence takes as input raw sensor measurements and analyzes them to eventually make decisions following final user preferences. Unfortunately, algorithms in this research area are mostly supervised, thus requiring a manual labeling of training instances usually involving final users in annoying and imprecise training sessions. In this paper, we propose a methodology allowing, given a sensor log, to automatically segment human habits by applying a bottom-up discretization strategy to the timestamp attribute of the sensor log. In particular, we show how classical quality measures, computed over Petri nets automatically mined from sensor logs filtered by timestamp, can be used as an heuristic to drive the discretization process, thus providing a likely subdivision of the day in human habits.
用于人类习惯发现的智能家居日志的无监督分割
智能家居代表了网络物理环境实现被称为环境智能的范例。支持环境智能的信息系统将原始传感器测量作为输入,并对其进行分析,最终根据最终用户的偏好做出决策。不幸的是,该研究领域的算法大多是受监督的,因此需要手动标记训练实例,通常涉及烦人且不精确的训练课程的最终用户。在本文中,我们提出了一种方法,允许给定传感器日志,通过对传感器日志的时间戳属性应用自下而上的离散化策略来自动分割人类习惯。特别是,我们展示了经典的质量度量,通过Petri网自动从时间戳过滤的传感器日志中挖掘计算,可以用作启发式方法来驱动离散化过程,从而提供了人类习惯中一天的可能细分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信