MCQA

Sunghye Park, Dohun Kim, Jae-Yoon Sim, Seokhyeong Kang
{"title":"MCQA","authors":"Sunghye Park, Dohun Kim, Jae-Yoon Sim, Seokhyeong Kang","doi":"10.1145/3508352.3549462","DOIUrl":null,"url":null,"abstract":"In response to the rapid development of quantum processors, quantum software must be advanced by considering the actual hardware limitations. Among the various design automation problems in quantum computing, qubit allocation modifies the input circuit to match the hardware topology constraints. In this work, we present an effective heuristic approach for qubit allocation that considers not only the hardware topology but also other constraints for near-fault-tolerant quantum computing (near-FTQC). We propose a practical methodology to find an effective initial mapping to reduce both the number of gates and circuit latency. We then perform dynamic scheduling to maximize the number of gates executed in parallel in the main mapping phase. Our experimental results with a Surface-17 processor confirmed a substantial reduction in the number of gates, latency, and runtime by 58%, 28%, and 99%, respectively, compared with the previous method [18]. Moreover, our mapping method is scalable and has a linear time complexity with respect to the number of gates.","PeriodicalId":367046,"journal":{"name":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In response to the rapid development of quantum processors, quantum software must be advanced by considering the actual hardware limitations. Among the various design automation problems in quantum computing, qubit allocation modifies the input circuit to match the hardware topology constraints. In this work, we present an effective heuristic approach for qubit allocation that considers not only the hardware topology but also other constraints for near-fault-tolerant quantum computing (near-FTQC). We propose a practical methodology to find an effective initial mapping to reduce both the number of gates and circuit latency. We then perform dynamic scheduling to maximize the number of gates executed in parallel in the main mapping phase. Our experimental results with a Surface-17 processor confirmed a substantial reduction in the number of gates, latency, and runtime by 58%, 28%, and 99%, respectively, compared with the previous method [18]. Moreover, our mapping method is scalable and has a linear time complexity with respect to the number of gates.
MCQA
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信