A modification of Petri nets with anticipation on a position

Vitalii Statkevych
{"title":"A modification of Petri nets with anticipation on a position","authors":"Vitalii Statkevych","doi":"10.20535/srit.2308-8893.2023.1.08","DOIUrl":null,"url":null,"abstract":"We propose a modification of Petri nets with strong anticipation on a position. The extension modifies a transition rule by adding a new term that contains an integer function of the new marking in the position. The differences from classic Petri nets are found; for example, the set of markings that are reachable from a current marking by firing the enabled transition can either be empty or contain more than one marking. We consider the construction of a reachability graph and a coverability tree. We give the conditions for the existence of the coverability tree and propose the algorithm for constructing the coverability tree that generalizes the well-known classic algorithm. The main ideas and constructions are illustrated in the examples.","PeriodicalId":330635,"journal":{"name":"System research and information technologies","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"System research and information technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/srit.2308-8893.2023.1.08","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a modification of Petri nets with strong anticipation on a position. The extension modifies a transition rule by adding a new term that contains an integer function of the new marking in the position. The differences from classic Petri nets are found; for example, the set of markings that are reachable from a current marking by firing the enabled transition can either be empty or contain more than one marking. We consider the construction of a reachability graph and a coverability tree. We give the conditions for the existence of the coverability tree and propose the algorithm for constructing the coverability tree that generalizes the well-known classic algorithm. The main ideas and constructions are illustrated in the examples.
带位置预测的Petri网的改进
我们提出了一种对位置具有强预期的Petri网的改进。扩展通过添加包含位置上新标记的整数函数的新术语来修改转换规则。发现了与经典Petri网的差异;例如,通过触发启用的转换从当前标记可访问的标记集可以是空的,也可以包含多个标记。我们考虑了可达图和可覆盖性树的构造。给出了可覆盖性树存在的条件,并提出了构造可覆盖性树的算法,将经典的可覆盖性树算法进行了推广。文中举例说明了本文的主要思想和结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信