{"title":"Fully in tensor computation manner: one-shot dense 3D structured light and beyond","authors":"Xuan-Li Chen, Luc Van Gool","doi":"10.1049/ccs.2019.0027","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Tensor computation evolves fast towards a prosperous existence in recent years, e.g. PyTorch. An immediate advantage of using tensor computation is that one does not need to implement low-level parallelism to attain efficient computation, which is of simplicity for both research and application development. The authors began with discovering that a simple manoeuvre ‘tensor shift’ could perform neighbourhood manipulation in very efficient parallel manner. Based on ‘tensor shift’, they derive the tensor version of a renowned correspondence search algorithm: semi-global matching (SGM), which they prefix the name as tensor-SGM. To evaluate their idea, they build-up a novel and practical one-shot structured light 3D acquisition system, which yields state-of-art reconstruction results using off-the-shelf hardware. This is the first fully tensorised 3D reconstruction system published to the authors’ best knowledge, and it opens new possibilities. A major one is, in the same tensorised framework, they solved the pattern interfering problem which hinders multi-structured light systems from working together. This part is marked as ‘beyond’ in this study to avoid confusing the readers the spotlight: the fully tensorised 3D structured light framework.</p>\n </div>","PeriodicalId":33652,"journal":{"name":"Cognitive Computation and Systems","volume":"2 4","pages":"262-272"},"PeriodicalIF":1.2000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ccs.2019.0027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Computation and Systems","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ccs.2019.0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Tensor computation evolves fast towards a prosperous existence in recent years, e.g. PyTorch. An immediate advantage of using tensor computation is that one does not need to implement low-level parallelism to attain efficient computation, which is of simplicity for both research and application development. The authors began with discovering that a simple manoeuvre ‘tensor shift’ could perform neighbourhood manipulation in very efficient parallel manner. Based on ‘tensor shift’, they derive the tensor version of a renowned correspondence search algorithm: semi-global matching (SGM), which they prefix the name as tensor-SGM. To evaluate their idea, they build-up a novel and practical one-shot structured light 3D acquisition system, which yields state-of-art reconstruction results using off-the-shelf hardware. This is the first fully tensorised 3D reconstruction system published to the authors’ best knowledge, and it opens new possibilities. A major one is, in the same tensorised framework, they solved the pattern interfering problem which hinders multi-structured light systems from working together. This part is marked as ‘beyond’ in this study to avoid confusing the readers the spotlight: the fully tensorised 3D structured light framework.