S. Makhno, O. M. Lisova, G. M. Gunya, P. Gorbyk, M. Kartel
{"title":"Synthesis and electrophysical properties of nanostructured composites NіCо/BaTiO3 and NiCo/TiO2","authors":"S. Makhno, O. M. Lisova, G. M. Gunya, P. Gorbyk, M. Kartel","doi":"10.15407/hftp14.02.173","DOIUrl":null,"url":null,"abstract":"Nanocomposites containing components with semiconductor, ferroelectric, and ferromagnetic properties have attracted considerable attention of specialists due to the range of possible applications, including catalysis and electrocatalysis, electrode materials for solar and fuel cells, capacitors, electrical and biosensors, anti-corrosion coatings and much more. In recent years, both fundamental and applied interest in this direction of research is due to the possibility of creating a new type of controlled microwave devices and tools. The aim of the work is to develop methods for the synthesis of nanostructured NiCo composites based on BaTiO3 and TiO2, as well as to find the differences and regularities of their physicochemical properties. Two series of samples with different content of NiCo nanoparticles based on titanium oxide (TiO2) and barium titanate (BaTiO3) were obtained. NiCo particles were obtained by the method of chemical precipitation of nickel and cobalt carbonates in equal parts from a hydrazine hydrate solution at the temperature of 350 K. The results of X-ray phase analysis indicate the chemical purity of the obtained samples. The values of ε′, ε″ at a frequency of 9 GHz for the NiCo/BaTiO3 system are twice as high compared to NiCo/TiO2 for the corresponding values of the NiCo content, which is due to the higher values of ε′, ε″ of the initial barium titanate. Electrical conductivity of NiCo/BaTiO3 system changes by six orders of magnitude, which indicates the formation of a continuous percolation cluster of metal particles on the surface of dielectric BaTiO3 particles. The composites are heat-resistant up to 630K, as shown by the method of thermogravimetry and pronounced magnetic properties. The program for calculating frequency dependences of reflection and absorption coefficients in a complex form has been developed. EMF absorption for composites from the radiation frequency and the position of the minima of these characteristics, which agree satisfactorily with the experiment. The obtained composites can be promising components for obtaining composite systems and paints for protection against electromagnetic radiation.","PeriodicalId":296392,"journal":{"name":"Himia, Fizika ta Tehnologia Poverhni","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Himia, Fizika ta Tehnologia Poverhni","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/hftp14.02.173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nanocomposites containing components with semiconductor, ferroelectric, and ferromagnetic properties have attracted considerable attention of specialists due to the range of possible applications, including catalysis and electrocatalysis, electrode materials for solar and fuel cells, capacitors, electrical and biosensors, anti-corrosion coatings and much more. In recent years, both fundamental and applied interest in this direction of research is due to the possibility of creating a new type of controlled microwave devices and tools. The aim of the work is to develop methods for the synthesis of nanostructured NiCo composites based on BaTiO3 and TiO2, as well as to find the differences and regularities of their physicochemical properties. Two series of samples with different content of NiCo nanoparticles based on titanium oxide (TiO2) and barium titanate (BaTiO3) were obtained. NiCo particles were obtained by the method of chemical precipitation of nickel and cobalt carbonates in equal parts from a hydrazine hydrate solution at the temperature of 350 K. The results of X-ray phase analysis indicate the chemical purity of the obtained samples. The values of ε′, ε″ at a frequency of 9 GHz for the NiCo/BaTiO3 system are twice as high compared to NiCo/TiO2 for the corresponding values of the NiCo content, which is due to the higher values of ε′, ε″ of the initial barium titanate. Electrical conductivity of NiCo/BaTiO3 system changes by six orders of magnitude, which indicates the formation of a continuous percolation cluster of metal particles on the surface of dielectric BaTiO3 particles. The composites are heat-resistant up to 630K, as shown by the method of thermogravimetry and pronounced magnetic properties. The program for calculating frequency dependences of reflection and absorption coefficients in a complex form has been developed. EMF absorption for composites from the radiation frequency and the position of the minima of these characteristics, which agree satisfactorily with the experiment. The obtained composites can be promising components for obtaining composite systems and paints for protection against electromagnetic radiation.