Modal Logic With Non-Deterministic Semantics: Part II - Quantified Case

M. Coniglio, L. F. D. Cerro, N. Peron
{"title":"Modal Logic With Non-Deterministic Semantics: Part II - Quantified Case","authors":"M. Coniglio, L. F. D. Cerro, N. Peron","doi":"10.1093/JIGPAL/JZAB020","DOIUrl":null,"url":null,"abstract":"\n In the first part of this paper we analyzed finite non-deterministic matrix semantics for propositional non-normal modal logics as an alternative to the standard Kripke possible world semantics. This kind of modal system characterized by finite non-deterministic matrices was originally proposed by Ju. Ivlev in the 70s. The aim of this second paper is to introduce a formal non-deterministic semantical framework for the quantified versions of some Ivlev-like non-normal modal logics. It will be shown that several well-known controversial issues of quantified modal logics, relative to the identity predicate, Barcan’s formulas and de re and de dicto modalities, can be tackled from a new angle within the present framework.","PeriodicalId":304915,"journal":{"name":"Log. J. IGPL","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. J. IGPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/JIGPAL/JZAB020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In the first part of this paper we analyzed finite non-deterministic matrix semantics for propositional non-normal modal logics as an alternative to the standard Kripke possible world semantics. This kind of modal system characterized by finite non-deterministic matrices was originally proposed by Ju. Ivlev in the 70s. The aim of this second paper is to introduce a formal non-deterministic semantical framework for the quantified versions of some Ivlev-like non-normal modal logics. It will be shown that several well-known controversial issues of quantified modal logics, relative to the identity predicate, Barcan’s formulas and de re and de dicto modalities, can be tackled from a new angle within the present framework.
具有非确定性语义的模态逻辑:第二部分-量化情况
本文第一部分分析了命题非正态模态逻辑的有限非确定性矩阵语义作为标准Kripke可能世界语义的替代。这种以有限不确定性矩阵为特征的模态系统最初是由Ju提出的。70年代的伊夫列夫。第二篇论文的目的是为一些类ivlev非正态模态逻辑的量化版本引入一个形式化的非确定性语义框架。它将表明,量化模态逻辑的几个众所周知的有争议的问题,相对于恒等谓词,巴肯公式和de re和de dicto模态,可以在目前的框架内从一个新的角度来解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信