Improved Particle Swarm Optimization using Evolutionary Algorithm

Sukanya Chansamorn, Wichaya Somgiat
{"title":"Improved Particle Swarm Optimization using Evolutionary Algorithm","authors":"Sukanya Chansamorn, Wichaya Somgiat","doi":"10.1109/jcsse54890.2022.9836238","DOIUrl":null,"url":null,"abstract":"In this paper, the researchers applied the Particle Swarm Optimization (PSO) algorithm combined with the Evolutionary Algorithm (EA) and called this hybrid approach PSOEA. This approach combines the benefits of PSO with EA. Integrating the PSO with the EA's mutation, recombination, and selection processes, allows a more efficient global search and faster convergence rate to obtain the optimal solution. PSO can also escape from local optima using EA process. PSOEA is experiment with 24 benchmark functions comparing with the conventional PSO and other similar approaches. The experiment result showed that PSOEA can find solutions faster and better than compared algorithms.","PeriodicalId":284735,"journal":{"name":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/jcsse54890.2022.9836238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the researchers applied the Particle Swarm Optimization (PSO) algorithm combined with the Evolutionary Algorithm (EA) and called this hybrid approach PSOEA. This approach combines the benefits of PSO with EA. Integrating the PSO with the EA's mutation, recombination, and selection processes, allows a more efficient global search and faster convergence rate to obtain the optimal solution. PSO can also escape from local optima using EA process. PSOEA is experiment with 24 benchmark functions comparing with the conventional PSO and other similar approaches. The experiment result showed that PSOEA can find solutions faster and better than compared algorithms.
基于进化算法的改进粒子群优化
本文将粒子群优化(PSO)算法与进化算法(EA)相结合,将这种混合方法称为PSOEA。该方法结合了粒子群算法和EA算法的优点,将粒子群算法与EA算法的突变、重组和选择过程相结合,可以实现更高效的全局搜索和更快的收敛速度,从而获得最优解。粒子群算法还可以利用EA过程摆脱局部最优解。用24个基准函数对PSOEA进行了实验,并与传统的PSO和其他类似方法进行了比较。实验结果表明,与比较算法相比,PSOEA能更快更好地找到解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信