A new photonic atom: Submicron silicon nanocavities with strong magnetic resonances in the optical region

Lei Shi, U. Tuzer, E. Xifré-Pérez, R. Fenollosa, F. D. de Abajo, F. Meseguer
{"title":"A new photonic atom: Submicron silicon nanocavities with strong magnetic resonances in the optical region","authors":"Lei Shi, U. Tuzer, E. Xifré-Pérez, R. Fenollosa, F. D. de Abajo, F. Meseguer","doi":"10.1109/ICTON.2012.6253763","DOIUrl":null,"url":null,"abstract":"The essence of electronic binding lies in the electromagnetic force resulting from the exchange of virtual photons. This constitutes the basis of chemistry. Similar effects appear in neighboring optical microcavities when shined with a laser beam. Following this analogy, the optical modes of a microcavity resemble to the electronic orbitals of an atom, then called photonic atom (PA). The photonic interaction of several PAs may form photonic molecules (PM). The PM concept, has allowed studying new properties of light-matter interaction. Also it has been applied to realize low threshold microlasers, enhanced directional light emission, high sensitivity sensors and even quantum information processes. The most typical examples of PAs range metallic nanoparticles, to low refractive index dielectric microspheres or microdisks. In the former case (metallic PAs), the high optical dissipation of metals is a big obstacle for developing devices. In the case of low refractive index PAs the whispering gallery modes (WGM) contributing to photonic binding are always localized at the cavity surface, so they would be equivalent to atoms excited into high-energy orbitals. Furthermore, as it happens for electronic orbitals, the electrical resonances of photonic PAs and PMs play a dominant role over the magnetic ones. Here, we show our recent experimental and theoretical results concerning: A) The optical properties of spherical nanocavities made of silicon in the submicron range. B) The strong interaction between silicon colloidal and its mirror image under perfect electric conductor.","PeriodicalId":217442,"journal":{"name":"2012 14th International Conference on Transparent Optical Networks (ICTON)","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th International Conference on Transparent Optical Networks (ICTON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTON.2012.6253763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The essence of electronic binding lies in the electromagnetic force resulting from the exchange of virtual photons. This constitutes the basis of chemistry. Similar effects appear in neighboring optical microcavities when shined with a laser beam. Following this analogy, the optical modes of a microcavity resemble to the electronic orbitals of an atom, then called photonic atom (PA). The photonic interaction of several PAs may form photonic molecules (PM). The PM concept, has allowed studying new properties of light-matter interaction. Also it has been applied to realize low threshold microlasers, enhanced directional light emission, high sensitivity sensors and even quantum information processes. The most typical examples of PAs range metallic nanoparticles, to low refractive index dielectric microspheres or microdisks. In the former case (metallic PAs), the high optical dissipation of metals is a big obstacle for developing devices. In the case of low refractive index PAs the whispering gallery modes (WGM) contributing to photonic binding are always localized at the cavity surface, so they would be equivalent to atoms excited into high-energy orbitals. Furthermore, as it happens for electronic orbitals, the electrical resonances of photonic PAs and PMs play a dominant role over the magnetic ones. Here, we show our recent experimental and theoretical results concerning: A) The optical properties of spherical nanocavities made of silicon in the submicron range. B) The strong interaction between silicon colloidal and its mirror image under perfect electric conductor.
一种新的光子原子:在光学区具有强磁共振的亚微米硅纳米腔
电子结合的本质在于虚光子交换产生的电磁力。这构成了化学的基础。当激光束照射在邻近的光学微腔中时,也会出现类似的效应。根据这种类比,微腔的光学模式类似于原子的电子轨道,当时称为光子原子(PA)。几个PAs的光子相互作用可以形成光子分子(PM)。PM概念允许研究光-物质相互作用的新特性。它还被应用于实现低阈值微激光器、增强定向光发射、高灵敏度传感器甚至量子信息处理。最典型的例子包括金属纳米粒子、低折射率介电微球或微盘。在前一种情况下(金属PAs),金属的高光耗散是开发器件的一大障碍。在低折射率PAs中,导致光子结合的窃窃廊模式(WGM)总是局限于腔体表面,因此它们相当于被激发成高能轨道的原子。此外,正如电子轨道发生的那样,光子PAs和pm的电共振比磁共振起主导作用。在这里,我们展示了我们最近关于以下方面的实验和理论结果:A)在亚微米范围内由硅制成的球形纳米腔的光学特性。B)理想电导体条件下硅胶体与其镜像之间的强相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信