On the Dominant Local Resolving Set of Vertex Amalgamation Graphs

R. Umilasari, L. Susilowati, S. Slamin, S. Prabhu
{"title":"On the Dominant Local Resolving Set of Vertex Amalgamation Graphs","authors":"R. Umilasari, L. Susilowati, S. Slamin, S. Prabhu","doi":"10.18860/ca.v7i4.18891","DOIUrl":null,"url":null,"abstract":"Basically, the new topic of the dominant local metric dimension which be symbolized by Ddim_l (H) is a combination of two concepts in graph theory, they were called the local metric dimension and dominating set. There are some terms in this topic that is dominant local resolving set and dominant local basis. An ordered subset W_l is said a dominant local resolving set of G if W_l is dominating set and also local resolving set of G. While dominant local basis is a dominant local resolving set with minimum cardinality. This study uses literature study method by observing the local metric dimension and dominating number before detecting the dominant local metric dimension of the graphs. After obtaining some new results, the purpose of this research is how the dominant local metric dimension of vertex amalgamation product graphs. Some special graphs that be used are star, friendship, complete graph and complete bipartite graph. Based on all observation results, it can be said that the dominant local metric dimension for any vertex amalgamation product graph depends on the dominant local metric dimension of the copied graphs and how the terminal vertex is constructed","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i4.18891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Basically, the new topic of the dominant local metric dimension which be symbolized by Ddim_l (H) is a combination of two concepts in graph theory, they were called the local metric dimension and dominating set. There are some terms in this topic that is dominant local resolving set and dominant local basis. An ordered subset W_l is said a dominant local resolving set of G if W_l is dominating set and also local resolving set of G. While dominant local basis is a dominant local resolving set with minimum cardinality. This study uses literature study method by observing the local metric dimension and dominating number before detecting the dominant local metric dimension of the graphs. After obtaining some new results, the purpose of this research is how the dominant local metric dimension of vertex amalgamation product graphs. Some special graphs that be used are star, friendship, complete graph and complete bipartite graph. Based on all observation results, it can be said that the dominant local metric dimension for any vertex amalgamation product graph depends on the dominant local metric dimension of the copied graphs and how the terminal vertex is constructed
顶点合并图的优势局部解析集
用Ddim_l (H)符号表示的支配性局部度量维的新课题基本上是图论中两个概念的结合,它们被称为局部度量维和支配集。本课题中有一些术语是主导局部解析集和主导局部基。如果W_l是G的支配集,又是G的局部解析集,则称有序子集W_l为G的支配局部解析集,而支配局部基是具有最小基数的支配局部解析集。本研究采用文献研究法,先观察图的局部度量维数和支配数,再检测图的局部度量维数。在得到一些新的结果后,研究了如何确定顶点合并积图的主导局部度量维数。所使用的特殊图有星形图、友谊图、完全图和完全二部图。根据所有的观察结果,可以说,任何顶点合并积图的优势局部度量维数取决于复制图的优势局部度量维数和终端顶点的构造方式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信