{"title":"On the Dominant Local Resolving Set of Vertex Amalgamation Graphs","authors":"R. Umilasari, L. Susilowati, S. Slamin, S. Prabhu","doi":"10.18860/ca.v7i4.18891","DOIUrl":null,"url":null,"abstract":"Basically, the new topic of the dominant local metric dimension which be symbolized by Ddim_l (H) is a combination of two concepts in graph theory, they were called the local metric dimension and dominating set. There are some terms in this topic that is dominant local resolving set and dominant local basis. An ordered subset W_l is said a dominant local resolving set of G if W_l is dominating set and also local resolving set of G. While dominant local basis is a dominant local resolving set with minimum cardinality. This study uses literature study method by observing the local metric dimension and dominating number before detecting the dominant local metric dimension of the graphs. After obtaining some new results, the purpose of this research is how the dominant local metric dimension of vertex amalgamation product graphs. Some special graphs that be used are star, friendship, complete graph and complete bipartite graph. Based on all observation results, it can be said that the dominant local metric dimension for any vertex amalgamation product graph depends on the dominant local metric dimension of the copied graphs and how the terminal vertex is constructed","PeriodicalId":388519,"journal":{"name":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CAUCHY: Jurnal Matematika Murni dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18860/ca.v7i4.18891","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Basically, the new topic of the dominant local metric dimension which be symbolized by Ddim_l (H) is a combination of two concepts in graph theory, they were called the local metric dimension and dominating set. There are some terms in this topic that is dominant local resolving set and dominant local basis. An ordered subset W_l is said a dominant local resolving set of G if W_l is dominating set and also local resolving set of G. While dominant local basis is a dominant local resolving set with minimum cardinality. This study uses literature study method by observing the local metric dimension and dominating number before detecting the dominant local metric dimension of the graphs. After obtaining some new results, the purpose of this research is how the dominant local metric dimension of vertex amalgamation product graphs. Some special graphs that be used are star, friendship, complete graph and complete bipartite graph. Based on all observation results, it can be said that the dominant local metric dimension for any vertex amalgamation product graph depends on the dominant local metric dimension of the copied graphs and how the terminal vertex is constructed