On the Distribution of the Stationary Point of Significance Level for Empirical Distribution Function

A. Kislitsyn, Y. Orlov, D. Moltchanov, Andrey K. Samuylov, A. Chukarin, Yulia Gaidamaka
{"title":"On the Distribution of the Stationary Point of Significance Level for Empirical Distribution Function","authors":"A. Kislitsyn, Y. Orlov, D. Moltchanov, Andrey K. Samuylov, A. Chukarin, Yulia Gaidamaka","doi":"10.1109/ICUMT.2018.8631234","DOIUrl":null,"url":null,"abstract":"We consider empirical distribution functions of nonstationary time-series, depending on set length. The local self- consistent significance level is introduced. The class of time- series, for which the distribution function of significance level is stationary, is considered. For example, the signal-to-interference ratio for random walking subscribers in D2D model of wireless connection belongs to this class of random processes. We introduce also the so-called Chernoff equivalence of the self-consistent significance level and derive the formula of averaging levels for various sets.","PeriodicalId":211042,"journal":{"name":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUMT.2018.8631234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider empirical distribution functions of nonstationary time-series, depending on set length. The local self- consistent significance level is introduced. The class of time- series, for which the distribution function of significance level is stationary, is considered. For example, the signal-to-interference ratio for random walking subscribers in D2D model of wireless connection belongs to this class of random processes. We introduce also the so-called Chernoff equivalence of the self-consistent significance level and derive the formula of averaging levels for various sets.
关于经验分布函数的显著性平稳点的分布
我们考虑非平稳时间序列的经验分布函数,它依赖于集合长度。引入了局部自洽显著性水平。考虑了显著性水平分布函数为平稳的一类时间序列。例如,无线连接的D2D模型中随机行走用户的信干扰比就属于这类随机过程。我们还引入了所谓的自洽显著性水平的Chernoff等价,并推导了各集合的平均水平公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信