{"title":"미니채널 내 물-에탄올 혼합물로 구성된 단일 액체 슬러그 계면 깨짐 현상에 대한 실험적 연구","authors":"Su Cheong Park, K. Seo, Dong In Yu","doi":"10.17958/ksmt.21.6.201912.1118","DOIUrl":null,"url":null,"abstract":"A two-phase flow in mini-channels is consist with various flow regimes (such as bubble slug, annular, churn flow) according to gas and liquid phase flow rates. A previous researches revealed that in a case of slug flow in hydrophobic mini-channels, gas and liquid phase are perfectly separated by interfaces and triple contact line. In this study, the single dry slug flow experiments in circular mini-channel (D = 1.018 mm) are conducted to observe interfacial break-up phenomena in high capillary number range (Ca < 0.02). The slug is consist with D.I. water or D.I. water-ethanol binary mixtures (5% and 10%, mole fraction). On the base of previous researches, we calculate the pressure drop at moving triple contact line. In an addition, a single dry slug flow is visualized by using high-speed camera. Through the experiment, three regimes of pressure drop are observed; steady, loss, separation. As a result, criteria between steady and loss regimes is closely related to capillary number, and criteria between loss and separation regimes is related to surface tension.","PeriodicalId":168106,"journal":{"name":"Journal of the Korean Society of Mechanical Technology","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society of Mechanical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17958/ksmt.21.6.201912.1118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A two-phase flow in mini-channels is consist with various flow regimes (such as bubble slug, annular, churn flow) according to gas and liquid phase flow rates. A previous researches revealed that in a case of slug flow in hydrophobic mini-channels, gas and liquid phase are perfectly separated by interfaces and triple contact line. In this study, the single dry slug flow experiments in circular mini-channel (D = 1.018 mm) are conducted to observe interfacial break-up phenomena in high capillary number range (Ca < 0.02). The slug is consist with D.I. water or D.I. water-ethanol binary mixtures (5% and 10%, mole fraction). On the base of previous researches, we calculate the pressure drop at moving triple contact line. In an addition, a single dry slug flow is visualized by using high-speed camera. Through the experiment, three regimes of pressure drop are observed; steady, loss, separation. As a result, criteria between steady and loss regimes is closely related to capillary number, and criteria between loss and separation regimes is related to surface tension.