L. Scorrano, A. Calcaterra, P. Bia, S. Maddio, G. Pelosi, M. Righini, S. Selleri
{"title":"A Compact and Lightweight Ultra-Wideband Interferometer for Direction Finding Applications","authors":"L. Scorrano, A. Calcaterra, P. Bia, S. Maddio, G. Pelosi, M. Righini, S. Selleri","doi":"10.23919/URSIGASS49373.2020.9232181","DOIUrl":null,"url":null,"abstract":"In this work it is proposed the design of a couple of UWB two-arm sinuous antennas working in 2-18 GHz (Antenna A) and 6-18 GHz (Antenna B) frequency bands assembled in a ultra-wideband array for direction finding applications. Both antennas work with a slant 45° polarization ensuring good matching impedance and stable radiation characteristics in the considered frequency bands. The design has been optimized in order to reduce the geometrical dimensions. The proposed antennas have been manufactured and tested in order to validate the simulation performances. Finally the evaluation of accuracy performances in estimating the direction of arrival of an incoming wave-front is presented.","PeriodicalId":438881,"journal":{"name":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/URSIGASS49373.2020.9232181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work it is proposed the design of a couple of UWB two-arm sinuous antennas working in 2-18 GHz (Antenna A) and 6-18 GHz (Antenna B) frequency bands assembled in a ultra-wideband array for direction finding applications. Both antennas work with a slant 45° polarization ensuring good matching impedance and stable radiation characteristics in the considered frequency bands. The design has been optimized in order to reduce the geometrical dimensions. The proposed antennas have been manufactured and tested in order to validate the simulation performances. Finally the evaluation of accuracy performances in estimating the direction of arrival of an incoming wave-front is presented.