Francesco Mattioli Della Rocca, Hanning Mai, S. W. Hutchings, T. A. Abbas, A. Tsiamis, Peter Lomax, I. Gyöngy, N. Dutton, R. Henderson
{"title":"A 128 × 128 SPAD Dynamic Vision-Triggered Time of Flight Imager","authors":"Francesco Mattioli Della Rocca, Hanning Mai, S. W. Hutchings, T. A. Abbas, A. Tsiamis, Peter Lomax, I. Gyöngy, N. Dutton, R. Henderson","doi":"10.1109/ESSCIRC.2019.8902693","DOIUrl":null,"url":null,"abstract":"A 128 x 128 SPAD motion detection-triggered time of flight (ToF) sensor is implemented in 40nm CMOS. The sensor combines vision and ToF ranging functions to only acquire depth frames when inter-frame intensity changes are detected. The 40µm x 20µm pixel integrates two 16-bit time-gated counters to acquire ToF histograms and repurposes them to compare two vision frames without requirement for additional out-of-pixel frame memory resources. An embedded ToF and vision processor performs on-chip vision frame comparison and binary frame output compression as well as controlling the time-resolved histogram sampling. The sensor achieves a maximum 20kfps in vision modality and 500fps in motion detection-triggered ToF over a measured 2.55m range with 1.6cm accuracy. The vision function reduces the sensor power consumption by 70% over continuous ToF operation and allows the sensor to gate the ToF laser emitter to reduce the system power when no motion activity is observed.","PeriodicalId":402948,"journal":{"name":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ESSCIRC 2019 - IEEE 45th European Solid State Circuits Conference (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2019.8902693","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
A 128 x 128 SPAD motion detection-triggered time of flight (ToF) sensor is implemented in 40nm CMOS. The sensor combines vision and ToF ranging functions to only acquire depth frames when inter-frame intensity changes are detected. The 40µm x 20µm pixel integrates two 16-bit time-gated counters to acquire ToF histograms and repurposes them to compare two vision frames without requirement for additional out-of-pixel frame memory resources. An embedded ToF and vision processor performs on-chip vision frame comparison and binary frame output compression as well as controlling the time-resolved histogram sampling. The sensor achieves a maximum 20kfps in vision modality and 500fps in motion detection-triggered ToF over a measured 2.55m range with 1.6cm accuracy. The vision function reduces the sensor power consumption by 70% over continuous ToF operation and allows the sensor to gate the ToF laser emitter to reduce the system power when no motion activity is observed.
一个128 x 128 SPAD运动检测触发的飞行时间(ToF)传感器在40nm CMOS中实现。该传感器结合了视觉和ToF测距功能,仅在检测到帧间强度变化时获取深度帧。40 μ m x 20 μ m像素集成了两个16位时间门控计数器,以获取ToF直方图,并将其重新用于比较两个视觉帧,而无需额外的像素外帧内存资源。嵌入式ToF和视觉处理器执行片上视觉帧比较和二进制帧输出压缩以及控制时间分辨直方图采样。该传感器在视觉模式下达到最大20kfps,在运动检测触发的ToF中达到最大500fps,测量范围为2.55m,精度为1.6cm。视觉功能使传感器在连续ToF操作中功耗降低70%,并允许传感器对ToF激光发射器进行门控,以在没有观察到运动活动时降低系统功耗。