Type 𝐼𝐼 quantum subgroups of 𝔰𝔩_{𝔑}. ℑ: Symmetries of local modules

Cain EDIE-MICHELL
{"title":"Type 𝐼𝐼 quantum subgroups of 𝔰𝔩_{𝔑}. ℑ: Symmetries of local modules","authors":"Cain EDIE-MICHELL","doi":"10.1090/cams/19","DOIUrl":null,"url":null,"abstract":"<p>This paper is the first of a pair that aims to classify a large number of the type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I upper I\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>I</mml:mi>\n <mml:mi>I</mml:mi>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">II</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> quantum subgroups of the categories <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript r plus 1 Baseline comma k right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>r</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{r+1}, k)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. In this work we classify the braided auto-equivalences of the categories of local modules for all known type <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I\">\n <mml:semantics>\n <mml:mi>I</mml:mi>\n <mml:annotation encoding=\"application/x-tex\">I</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> quantum subgroups of <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript r plus 1 Baseline comma k right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>r</mml:mi>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mi>k</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{r+1}, k)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>. We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript 2 Baseline comma 16 right-parenthesis Subscript upper R e p left-parenthesis double-struck upper Z 2 right-parenthesis Superscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mn>16</mml:mn>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>Rep</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>2</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{2}, 16)^0_{\\operatorname {Rep}(\\mathbb {Z}_{2})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript 3 Baseline comma 9 right-parenthesis Subscript upper R e p left-parenthesis double-struck upper Z 3 right-parenthesis Superscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mn>9</mml:mn>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>Rep</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{3}, 9)^0_{\\operatorname {Rep}(\\mathbb {Z}_{3})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript 4 Baseline comma 8 right-parenthesis Subscript upper R e p left-parenthesis double-struck upper Z 4 right-parenthesis Superscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mn>8</mml:mn>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>Rep</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>4</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{4}, 8)^0_{\\operatorname {Rep}(\\mathbb {Z}_{4})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>, and <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper C left-parenthesis German s German l Subscript 5 Baseline comma 5 right-parenthesis Subscript upper R e p left-parenthesis double-struck upper Z 5 right-parenthesis Superscript 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">C</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"fraktur\">s</mml:mi>\n <mml:mi mathvariant=\"fraktur\">l</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>5</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo>,</mml:mo>\n <mml:mn>5</mml:mn>\n <mml:msubsup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi>Rep</mml:mi>\n <mml:mo>⁡<!-- ⁡ --></mml:mo>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msub>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">Z</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>5</mml:mn>\n </mml:mrow>\n </mml:msub>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:mn>0</mml:mn>\n </mml:msubsup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\mathcal {C}(\\mathfrak {sl}_{5}, 5)^0_{\\operatorname {Rep}(\\mathbb {Z}_{5})}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula>.</p>\n\n<p>We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of <inline-formula content-type=\"math/mathml\"","PeriodicalId":285678,"journal":{"name":"Communications of the American Mathematical Society","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications of the American Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/cams/19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} .

We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of

输入𝐼𝐼的量子子群:𝔩_{𝔑}。局部模块的对称性
本文是对范畴C (sl r+1, k) \mathcal {C}(\mathfrak {sl}_{r+1}, k)的大量II II型量子子群进行分类的第一个对。本文对C (sl r+1, k) \mathcal {C}(\mathfrak {sl}_{r+1}, k)的所有已知I I型量子子群的局部模范畴的编织自等价进行了分类。我们发现除了四种情况(直到水平-秩对偶)外,对称性都是非例外的。这些例外情况是轨道C (s 1,2, 16) Rep (Z 2) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})},C (sl 3,9) Rep (z3) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})},C (sl 1,8) Rep (Z 4) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})},和C (s 1,5,5) Rep (z5) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})}我们在这项工作中开发了几个技术工具。本文给出了
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信