Efficient Robust Graph Learning Based on Minimax Concave Penalty and $\gamma$-Cross Entropy

Tatsuya Koyakumaru, M. Yukawa
{"title":"Efficient Robust Graph Learning Based on Minimax Concave Penalty and $\\gamma$-Cross Entropy","authors":"Tatsuya Koyakumaru, M. Yukawa","doi":"10.23919/eusipco55093.2022.9909870","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called $\\gamma$-lasso which exploits the $\\gamma-$ cross entropy. We devise a weighting technique which designs the data weights based on the $\\ell_{1}$ distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms $\\gamma$-lasso and tlasso as well as the existing non-robust graph learning methods in contaminated situations.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents an efficient robust method to learn sparse graphs from contaminated data. Specifically, the convex-analytic approach using the minimax concave penalty is formulated using the so-called $\gamma$-lasso which exploits the $\gamma-$ cross entropy. We devise a weighting technique which designs the data weights based on the $\ell_{1}$ distance in addition to the Mahalanobis distance for avoiding possible failures of outlier rejection due to the combinatorial graph Laplacian structure. Numerical examples show that the proposed method significantly outperforms $\gamma$-lasso and tlasso as well as the existing non-robust graph learning methods in contaminated situations.
基于极大极小凹惩罚和交叉熵的高效鲁棒图学习
本文提出了一种从污染数据中学习稀疏图的有效鲁棒方法。具体来说,使用极小极大凹惩罚的凸解析方法是使用所谓的$\gamma$-lasso来制定的,该方法利用了$\gamma$- $交叉熵。为了避免由于组合图拉普拉斯结构导致的离群值拒绝失败,我们设计了一种加权技术,除了基于马氏距离之外,还基于$\ell_{1}$距离来设计数据权重。数值算例表明,该方法在污染情况下明显优于$\gamma$-lasso和tlasso以及现有的非鲁棒图学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信