How communication can improve differentiation in the Modeling Field Theory framework

J. Fontanari, L. Perlovsky
{"title":"How communication can improve differentiation in the Modeling Field Theory framework","authors":"J. Fontanari, L. Perlovsky","doi":"10.1109/KIMAS.2007.369801","DOIUrl":null,"url":null,"abstract":"We propose a discrimination task scenario to study language acquisition in which an agent receives linguistic input from an external teacher, in addition to the sensory stimuli from the objects that make up the environment. The agent is endowed with the modeling field theory (MFT) categorization mechanism, which enables it to identify a few objects (or categories) composed of hundreds of random pixels (instances). We show that the agent with language is capable of differentiating objects or categories that it could not distinguish without language","PeriodicalId":193808,"journal":{"name":"2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Integration of Knowledge Intensive Multi-Agent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KIMAS.2007.369801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a discrimination task scenario to study language acquisition in which an agent receives linguistic input from an external teacher, in addition to the sensory stimuli from the objects that make up the environment. The agent is endowed with the modeling field theory (MFT) categorization mechanism, which enables it to identify a few objects (or categories) composed of hundreds of random pixels (instances). We show that the agent with language is capable of differentiating objects or categories that it could not distinguish without language
在建模场理论框架下,沟通如何改善差异性
我们提出了一个判别任务场景来研究语言习得,在这个场景中,agent除了接受来自构成环境的物体的感官刺激之外,还接受来自外部教师的语言输入。该智能体被赋予建模场理论(MFT)分类机制,使其能够识别由数百个随机像素(实例)组成的少数对象(或类别)。我们证明了具有语言的智能体能够区分没有语言就无法区分的对象或类别
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信