{"title":"Ground surveillance radar target classification based on 2D CNN","authors":"Yuhang Li, Yibin Rui, Yuan Gao, Jinying Gao","doi":"10.1117/12.2581289","DOIUrl":null,"url":null,"abstract":"In this paper, a new approach for classifying targets captured by low-resolution Ground Surveillance Radar is proposed. Radar target is detected by the Doppler effect in radar echo signal. Those signals can be disposed in various domains to gain unique features of targets which can be used in radar target classification and enhance its effectiveness. The proposed approach consists of two steps, transforming original signals from 1D to 2D and constructing deep 2D convolution neural networks(CNN). In first step, Toeplitz matrix is made use of reconstructing Radar signal, to build a 2D plane of data. Reconstruction does not change the characteristic distribution of the signal but maps the signal from one to two dimensions in a rearranged method. Whilst,it makes possible of using 2D CNN to train the data. In second step, we take advantage of the “bottleneck” block to create 2D CNN, which guarantee the depth of CNN and ease the problem of vanishing/exploding gradients in back propagation process. method was tested on actual collected database including human and car, which achieve 99.7% accuracy on the original test set and 97% accuracy after adding noise.","PeriodicalId":415097,"journal":{"name":"International Conference on Signal Processing Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Signal Processing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2581289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, a new approach for classifying targets captured by low-resolution Ground Surveillance Radar is proposed. Radar target is detected by the Doppler effect in radar echo signal. Those signals can be disposed in various domains to gain unique features of targets which can be used in radar target classification and enhance its effectiveness. The proposed approach consists of two steps, transforming original signals from 1D to 2D and constructing deep 2D convolution neural networks(CNN). In first step, Toeplitz matrix is made use of reconstructing Radar signal, to build a 2D plane of data. Reconstruction does not change the characteristic distribution of the signal but maps the signal from one to two dimensions in a rearranged method. Whilst,it makes possible of using 2D CNN to train the data. In second step, we take advantage of the “bottleneck” block to create 2D CNN, which guarantee the depth of CNN and ease the problem of vanishing/exploding gradients in back propagation process. method was tested on actual collected database including human and car, which achieve 99.7% accuracy on the original test set and 97% accuracy after adding noise.