Markov model order optimization for text recognition

C. Olivier, F. Jouzel, M. Avila
{"title":"Markov model order optimization for text recognition","authors":"C. Olivier, F. Jouzel, M. Avila","doi":"10.1109/ICDAR.1997.620560","DOIUrl":null,"url":null,"abstract":"Markov models are currently used for printed or handwritten word recognition. The order k is a very important parameter of these models. The aim of this paper is to use model selection criteria in order to estimate the order of a Markov model. Akaike (1973) suggested the AIC criterion for the estimation of the order k of a parameterized statistical model, including the term k as penalization of the likelihood function. Yet, selection according to this criterion leads asymptotically to a strict overestimation of the order. That is why we suggest the use of other consistent criteria in a Markovian case: the Bayesian and the Hannan and Quinn information criteria (BIC and /spl rho/, respectively). The performance of the criteria are analysed on simulated data and on a real case: a handwritten word description. We discuss the limit of these methods in relation to the number of states in the model.","PeriodicalId":435320,"journal":{"name":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fourth International Conference on Document Analysis and Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.1997.620560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Markov models are currently used for printed or handwritten word recognition. The order k is a very important parameter of these models. The aim of this paper is to use model selection criteria in order to estimate the order of a Markov model. Akaike (1973) suggested the AIC criterion for the estimation of the order k of a parameterized statistical model, including the term k as penalization of the likelihood function. Yet, selection according to this criterion leads asymptotically to a strict overestimation of the order. That is why we suggest the use of other consistent criteria in a Markovian case: the Bayesian and the Hannan and Quinn information criteria (BIC and /spl rho/, respectively). The performance of the criteria are analysed on simulated data and on a real case: a handwritten word description. We discuss the limit of these methods in relation to the number of states in the model.
文本识别的马尔可夫模型顺序优化
马尔可夫模型目前用于打印或手写单词识别。k阶是这些模型的一个非常重要的参数。本文的目的是利用模型选择准则来估计马尔可夫模型的阶数。Akaike(1973)提出了估算参数化统计模型k阶的AIC准则,其中包括k项作为似然函数的惩罚项。然而,根据这一标准进行选择会逐渐导致对顺序的严格高估。这就是为什么我们建议在马尔可夫情况下使用其他一致的标准:贝叶斯和Hannan和Quinn信息标准(分别为BIC和/spl rho/)。在模拟数据和一个真实案例上分析了这些标准的性能:一个手写的单词描述。我们讨论了这些方法与模型中状态数的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信