Using Detailed Access Trajectories for Learning Behavior Analysis

Yanbang Wang, N. Law, Erik Hemberg, Una-May O’Reilly
{"title":"Using Detailed Access Trajectories for Learning Behavior Analysis","authors":"Yanbang Wang, N. Law, Erik Hemberg, Una-May O’Reilly","doi":"10.1145/3303772.3303781","DOIUrl":null,"url":null,"abstract":"Student learning activity in MOOCs can be viewed from multiple perspectives. We present a new organization of MOOC learner activity data at a resolution that is in between the fine granularity of the clickstream and coarse organizations that count activities, aggregate students or use long duration time units. A detailed access trajectory (DAT) consists of binary values and is two dimensional with one axis that is a time series, and the other that is a chronologically ordered list of a MOOC component type's instances, videos in instructional order, for example. Most popular MOOC platforms generate data that can be organized as detailed access trajectories (DATs). We explore the value of DATs by conducting four empirical mini-studies. Our studies suggest DATs contain rich information about students' learning behaviors and facilitate MOOC learning analyses.","PeriodicalId":382957,"journal":{"name":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3303772.3303781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Student learning activity in MOOCs can be viewed from multiple perspectives. We present a new organization of MOOC learner activity data at a resolution that is in between the fine granularity of the clickstream and coarse organizations that count activities, aggregate students or use long duration time units. A detailed access trajectory (DAT) consists of binary values and is two dimensional with one axis that is a time series, and the other that is a chronologically ordered list of a MOOC component type's instances, videos in instructional order, for example. Most popular MOOC platforms generate data that can be organized as detailed access trajectories (DATs). We explore the value of DATs by conducting four empirical mini-studies. Our studies suggest DATs contain rich information about students' learning behaviors and facilitate MOOC learning analyses.
使用详细访问轨迹进行学习行为分析
学生在mooc中的学习活动可以从多个角度来看待。我们提出了一种新的MOOC学习者活动数据组织,其分辨率介于点击流的细粒度和计算活动、汇总学生或使用长时间单位的粗组织之间。详细的访问轨迹(DAT)由二进制值组成,是二维的,其中一个轴是时间序列,另一个轴是按时间顺序排列的MOOC组件类型的实例列表,例如按教学顺序排列的视频。大多数流行的MOOC平台生成的数据可以组织为详细的访问轨迹(dat)。我们通过进行四项实证小型研究来探索数据交换的价值。我们的研究表明,dat包含了丰富的学生学习行为信息,有助于MOOC学习分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信