{"title":"A new neural network-based control scheme for fault detection and fault diagnosis in fuzzy multivariate multinomial data","authors":"M. Maleki, S. Mousavi, A. Amiri","doi":"10.1504/IJADS.2015.069605","DOIUrl":null,"url":null,"abstract":"In some multivariate statistical control applications, the data of the process cannot be precise and defined linguistically in practice. Using multivariate control charts in such situations with non-precise data leads to misleading results. In this paper, a new neural network-based monitoring scheme is presented by considering fuzzy multivariate multinomial data. The proposed approach is also able to identify the attribute(s) that cause an out-of-control signal. An application example is provided to evaluate the performance of the proposed approach in detecting different shifts as well as diagnosing the out-of-control attribute quality characteristic(s). The results of applying the proposed approach in both fault detection and the fault diagnosis are satisfactory.","PeriodicalId":216414,"journal":{"name":"Int. J. Appl. Decis. Sci.","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Appl. Decis. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJADS.2015.069605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
In some multivariate statistical control applications, the data of the process cannot be precise and defined linguistically in practice. Using multivariate control charts in such situations with non-precise data leads to misleading results. In this paper, a new neural network-based monitoring scheme is presented by considering fuzzy multivariate multinomial data. The proposed approach is also able to identify the attribute(s) that cause an out-of-control signal. An application example is provided to evaluate the performance of the proposed approach in detecting different shifts as well as diagnosing the out-of-control attribute quality characteristic(s). The results of applying the proposed approach in both fault detection and the fault diagnosis are satisfactory.