Informative Priors and Bayesian Computation

Shirin Golchi
{"title":"Informative Priors and Bayesian Computation","authors":"Shirin Golchi","doi":"10.1109/DSAA.2016.67","DOIUrl":null,"url":null,"abstract":"The use of prior distributions is often a controversial topic in Bayesian inference. Informative priors are often avoided at all costs. However, when prior information is available informative priors are an appropriate way of introducing this information into the model. Furthermore, informative priors, when used properly and creatively, can provide solutions to computational issues and improve modeling efficiency. Through three examples with different applications we demonstrate the importance and usefulness of informative priors in incorporating external information into the model and overcoming computational difficulties.","PeriodicalId":193885,"journal":{"name":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","volume":"118 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSAA.2016.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The use of prior distributions is often a controversial topic in Bayesian inference. Informative priors are often avoided at all costs. However, when prior information is available informative priors are an appropriate way of introducing this information into the model. Furthermore, informative priors, when used properly and creatively, can provide solutions to computational issues and improve modeling efficiency. Through three examples with different applications we demonstrate the importance and usefulness of informative priors in incorporating external information into the model and overcoming computational difficulties.
信息先验和贝叶斯计算
先验分布的使用在贝叶斯推理中经常是一个有争议的话题。通常不惜一切代价避免信息先验。然而,当先验信息可用时,信息先验是将该信息引入模型的适当方法。此外,信息先验,如果使用得当和创造性,可以提供解决方案的计算问题,提高建模效率。通过三个不同应用的例子,我们证明了信息先验在将外部信息纳入模型和克服计算困难方面的重要性和有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信