{"title":"Improved jamming resistance using electronically steerable parasitic antenna radiator","authors":"M. Tarkowski, M. Rzymowski, L. Kulas, K. Nyka","doi":"10.1109/EUROCON.2017.8011161","DOIUrl":null,"url":null,"abstract":"This paper presents an idea of using an Electronically Steerable Parasitic Antenna Radiator (ESPAR) for jamming suppression in IEEE 802.11b networks. Jamming (intentional interference) attacks are known to be effective and easy to perform, which may impose connectivity problems in applications concerning Internet of Things (IoT). In our paper, theoretical considerations are presented and the results of experiments performed in anechoic chamber are examined. During the test, IEEE 802.11b standard was used to provide communication between transmitter and receiver, and Software Defined Radio (SDR) device, which was used as a source of an intentional interference (jammer). The results showed that connectivity during jamming attack can be improved by using switched-beam antenna enhancing system's bandwidth.","PeriodicalId":114100,"journal":{"name":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2017 -17th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2017.8011161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This paper presents an idea of using an Electronically Steerable Parasitic Antenna Radiator (ESPAR) for jamming suppression in IEEE 802.11b networks. Jamming (intentional interference) attacks are known to be effective and easy to perform, which may impose connectivity problems in applications concerning Internet of Things (IoT). In our paper, theoretical considerations are presented and the results of experiments performed in anechoic chamber are examined. During the test, IEEE 802.11b standard was used to provide communication between transmitter and receiver, and Software Defined Radio (SDR) device, which was used as a source of an intentional interference (jammer). The results showed that connectivity during jamming attack can be improved by using switched-beam antenna enhancing system's bandwidth.