{"title":"Decomposition-Based Control for a Powered Knee and Ankle Transfemoral Prosthesis","authors":"H. A. Varol, M. Goldfarb","doi":"10.1109/ICORR.2007.4428514","DOIUrl":null,"url":null,"abstract":"This paper describes an active passive torque decomposition procedure for use in controlling a fully powered transfemoral prosthesis. The active and passive parts of the joint torques are extracted by solving a constrained least squares optimization problem. Rather than utilize \"echo control\" as proposed by others, the proposed approach generates the torque reference of joints by combining the active part, which is a function of the force and moment vector of the interaction between user and prosthesis and the passive part, which has a nonlinear spring-dashpot behavior. The ability of the approach to reconstruct the required joint torques is demonstrated in simulation on measured biomechanics data.","PeriodicalId":197465,"journal":{"name":"2007 IEEE 10th International Conference on Rehabilitation Robotics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 10th International Conference on Rehabilitation Robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2007.4428514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25
Abstract
This paper describes an active passive torque decomposition procedure for use in controlling a fully powered transfemoral prosthesis. The active and passive parts of the joint torques are extracted by solving a constrained least squares optimization problem. Rather than utilize "echo control" as proposed by others, the proposed approach generates the torque reference of joints by combining the active part, which is a function of the force and moment vector of the interaction between user and prosthesis and the passive part, which has a nonlinear spring-dashpot behavior. The ability of the approach to reconstruct the required joint torques is demonstrated in simulation on measured biomechanics data.