Indoor localization of vehicles using Deep Learning

A. Kumar, Bernd Schäufele, Daniel Becker, Oliver Sawade, I. Radusch
{"title":"Indoor localization of vehicles using Deep Learning","authors":"A. Kumar, Bernd Schäufele, Daniel Becker, Oliver Sawade, I. Radusch","doi":"10.1109/WoWMoM.2016.7523569","DOIUrl":null,"url":null,"abstract":"Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features.","PeriodicalId":187747,"journal":{"name":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 17th International Symposium on A World of Wireless, Mobile and Multimedia Networks (WoWMoM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WoWMoM.2016.7523569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Modern vehicles are equipped with numerous driver assistance and telematics functions, such as Turn-by-Turn navigation. Most of these systems rely on precise positioning of the vehicle. While Global Navigation Satellite Systems (GNSS) are available outdoors, these systems fail in indoor environments such as a car-park or a tunnel. Alternatively, the vehicle can localize itself with landmark-based positioning and internal car sensors, yet this is not only costly but also requires precise knowledge of the enclosed area. Instead, our approach is to use infrastructure-based positioning. Here, we utilize off-the shelf cameras mounted in the car-park and Vehicle-to-Infrastructure Communication to allow all vehicles to obtain an indoor position given from an infrastructure-based localization service. Our approach uses a Convolutional Neural Network (CNN) with Deep Learning to identify and localize vehicles in a car-park. We thus enable position-based Driver Assistance Systems (DAS) and telematics in an underground facility. We compare the novel Deep Learning classifier to a conventional classifier using Haar-like features.
使用深度学习的车辆室内定位
现代车辆配备了许多驾驶员辅助和远程信息处理功能,如转弯导航。这些系统大多依赖于车辆的精确定位。虽然全球导航卫星系统(GNSS)在室外可用,但这些系统在室内环境(如停车场或隧道)中会失效。或者,车辆可以通过基于地标的定位和内部汽车传感器来定位自己,但这不仅成本高昂,而且需要对封闭区域有精确的了解。相反,我们的方法是使用基于基础设施的定位。在这里,我们利用安装在停车场的现成摄像头和车辆与基础设施的通信,让所有车辆都能从基于基础设施的定位服务中获得室内位置。我们的方法使用卷积神经网络(CNN)和深度学习来识别和定位停车场中的车辆。因此,我们在地下设施中启用了基于位置的驾驶辅助系统(DAS)和远程信息处理。我们将新的深度学习分类器与使用haar样特征的传统分类器进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信