Connectionist incremental learning by analogy

T. Watanabe, H. Fujimura, S. Yasui
{"title":"Connectionist incremental learning by analogy","authors":"T. Watanabe, H. Fujimura, S. Yasui","doi":"10.1109/ICONIP.1999.844663","DOIUrl":null,"url":null,"abstract":"The Connectionist Analogy Processor (CAP) is a neural network. The paradigm of CAP assumes relational isomorphism for analogical inference. An internal abstraction model is formed by backpropagation training with the aid of a pruning mechanism. CAP also automatically develops abstraction and de-abstraction mappings to link the general and specific entities. CAP is applied to incremental analogical learning that involves multiple sets of analogy. It is shown that a new set of target data are selectively bound to the right one of internal abstraction models acquired from the previous analogical learning, i.e., the abstraction model acts as the attractor in the weight parameter space.","PeriodicalId":237855,"journal":{"name":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICONIP'99. ANZIIS'99 & ANNES'99 & ACNN'99. 6th International Conference on Neural Information Processing. Proceedings (Cat. No.99EX378)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.1999.844663","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The Connectionist Analogy Processor (CAP) is a neural network. The paradigm of CAP assumes relational isomorphism for analogical inference. An internal abstraction model is formed by backpropagation training with the aid of a pruning mechanism. CAP also automatically develops abstraction and de-abstraction mappings to link the general and specific entities. CAP is applied to incremental analogical learning that involves multiple sets of analogy. It is shown that a new set of target data are selectively bound to the right one of internal abstraction models acquired from the previous analogical learning, i.e., the abstraction model acts as the attractor in the weight parameter space.
通过类比的联结主义增量学习
连接主义类比处理器(CAP)是一种神经网络。CAP的范式为类比推理假定了关系同构。通过反向传播训练,借助剪枝机制形成内部抽象模型。CAP还自动开发抽象和反抽象映射,以链接一般实体和特定实体。CAP应用于涉及多组类比的增量类比学习。结果表明,新的目标数据集被选择性地绑定到从先前的类比学习中获得的内部抽象模型的正确模型上,即抽象模型在权重参数空间中充当吸引子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信