A Neural Network to Estimate Isolated Performance from Multi-Program Execution

Manel Lurbe, Josué Feliu, S. Petit, M. E. Gómez, J. Sahuquillo
{"title":"A Neural Network to Estimate Isolated Performance from Multi-Program Execution","authors":"Manel Lurbe, Josué Feliu, S. Petit, M. E. Gómez, J. Sahuquillo","doi":"10.1109/pdp55904.2022.00018","DOIUrl":null,"url":null,"abstract":"When multiple applications are running on a platform with shared resources like multicore CPUs, the behaviour of the running application can be altered by the co-runners. In this case, the system resources need to be managed (e.g. by repartitioning the cache space, re-schedule applications in distinct cores, modifying the prefetcher configuration, etc.) to reduce the inter-application interference in order to minimize the performance losses over isolated execution. In this context, a main challenge in different computing scenarios like the public cloud or soft real-time systems is knowing the performance impact of a given management action on each application with respect to its isolated execution. With this aim, in this work we present a neural network-based approach that estimates the performance an application would have had in isolation from multi-program executions. Experimental results show that the proposal dynamically adapts to changes in application behavior. On average, the predicted performance presents an error deviation by 11.7% and 2.3% for MAPE and MSE respectively.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When multiple applications are running on a platform with shared resources like multicore CPUs, the behaviour of the running application can be altered by the co-runners. In this case, the system resources need to be managed (e.g. by repartitioning the cache space, re-schedule applications in distinct cores, modifying the prefetcher configuration, etc.) to reduce the inter-application interference in order to minimize the performance losses over isolated execution. In this context, a main challenge in different computing scenarios like the public cloud or soft real-time systems is knowing the performance impact of a given management action on each application with respect to its isolated execution. With this aim, in this work we present a neural network-based approach that estimates the performance an application would have had in isolation from multi-program executions. Experimental results show that the proposal dynamically adapts to changes in application behavior. On average, the predicted performance presents an error deviation by 11.7% and 2.3% for MAPE and MSE respectively.
一种估计多程序执行孤立性能的神经网络
当多个应用程序在具有多核cpu等共享资源的平台上运行时,正在运行的应用程序的行为可以由共同运行者改变。在这种情况下,需要管理系统资源(例如,通过重新划分缓存空间,在不同的核心中重新调度应用程序,修改预取器配置等)来减少应用程序间的干扰,以最大限度地减少隔离执行带来的性能损失。在这种情况下,在不同的计算场景(如公共云或软实时系统)中,一个主要挑战是了解给定的管理操作对每个应用程序的性能影响(相对于其孤立的执行)。有了这个目标,在这项工作中,我们提出了一种基于神经网络的方法,该方法可以估计应用程序在独立于多程序执行时的性能。实验结果表明,该方案能够动态适应应用行为的变化。平均而言,MAPE和MSE的预测性能偏差分别为11.7%和2.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信