Recognition of Handwritten Kannada Numerals

N. Sharma, U. Pal, F. Kimura
{"title":"Recognition of Handwritten Kannada Numerals","authors":"N. Sharma, U. Pal, F. Kimura","doi":"10.1109/ICIT.2006.77","DOIUrl":null,"url":null,"abstract":"This paper deals with a quadratic classifier based scheme for the recognition of off-line handwritten numerals of Kannada, an important Indian script. The features used in the classifier are obtained from the directional chain code information of the contour points of the characters. The bounding box of a character is segmented into blocks and the chain code histogram is computed in each of the blocks. Here we have used 64 dimensional and 100 dimensional features for a comparative study on the recognition accuracy of our proposed system. This chain code features are fed to the quadratic classifier for recognition. We tested our scheme on 2300 data samples and obtained 97.87% and 98.45% recognition accuracy using 64 dimensional and 100 dimensional features respectively, from the proposed scheme using five-fold cross-validation technique.","PeriodicalId":161120,"journal":{"name":"9th International Conference on Information Technology (ICIT'06)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Information Technology (ICIT'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2006.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

This paper deals with a quadratic classifier based scheme for the recognition of off-line handwritten numerals of Kannada, an important Indian script. The features used in the classifier are obtained from the directional chain code information of the contour points of the characters. The bounding box of a character is segmented into blocks and the chain code histogram is computed in each of the blocks. Here we have used 64 dimensional and 100 dimensional features for a comparative study on the recognition accuracy of our proposed system. This chain code features are fed to the quadratic classifier for recognition. We tested our scheme on 2300 data samples and obtained 97.87% and 98.45% recognition accuracy using 64 dimensional and 100 dimensional features respectively, from the proposed scheme using five-fold cross-validation technique.
手写体卡纳达数字的识别
本文研究了一种基于二次分类器的脱机手写体数字识别方法。分类器使用的特征是从字符轮廓点的方向链编码信息中获得的。将字符的边界框分割成块,并在每个块中计算链码直方图。在这里,我们使用64维和100维特征对我们提出的系统的识别精度进行了比较研究。该链码特征被送入二次型分类器进行识别。我们对2300个数据样本进行了测试,采用五重交叉验证技术,对64维和100维特征分别获得了97.87%和98.45%的识别准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信