{"title":"Cross-Domain Fault Diagnosis for Rotating Machines with Multi-Scale Domain Adaptation","authors":"Yifei Ding, M. Jia","doi":"10.1109/PHM-Yantai55411.2022.9941970","DOIUrl":null,"url":null,"abstract":"Transfer learning (TL), especially domain adaptation (DA), has greatly enhanced the cross-domain fault diagnosis of rotating machines. However, the existing methods based on feature alignment at a single scale are still inadequate for complex cross-domain generalization, and thus have much room for improvement. Therefore, this work proposed a multi-scale domain adaptation network (MSDAN) to achieve representation alignment with multiple scales. By minimizing the uniquely designed combined mean maximum discrepancy (CoMMD) metrics, MSDAN is able to learn more domain-invariant representations on multi-scale branches. The case study that learns multi-scale domain adaptation (MSDN) with vibration signals of cross-domain bearings fully validates the feasibility of this method. Comparison with state-of-the-art methods also shows the necessity and advantages of simultaneous domain adaptation on multi-scale representations.","PeriodicalId":315994,"journal":{"name":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Global Reliability and Prognostics and Health Management (PHM-Yantai)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM-Yantai55411.2022.9941970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transfer learning (TL), especially domain adaptation (DA), has greatly enhanced the cross-domain fault diagnosis of rotating machines. However, the existing methods based on feature alignment at a single scale are still inadequate for complex cross-domain generalization, and thus have much room for improvement. Therefore, this work proposed a multi-scale domain adaptation network (MSDAN) to achieve representation alignment with multiple scales. By minimizing the uniquely designed combined mean maximum discrepancy (CoMMD) metrics, MSDAN is able to learn more domain-invariant representations on multi-scale branches. The case study that learns multi-scale domain adaptation (MSDN) with vibration signals of cross-domain bearings fully validates the feasibility of this method. Comparison with state-of-the-art methods also shows the necessity and advantages of simultaneous domain adaptation on multi-scale representations.