Line Operator as Preprocessing Method for CNN-based Osteoporosis Detection in Dental Panoramic Radiograph

Ilham Gurat Adillion, Y. Ishida, A. Arifin
{"title":"Line Operator as Preprocessing Method for CNN-based Osteoporosis Detection in Dental Panoramic Radiograph","authors":"Ilham Gurat Adillion, Y. Ishida, A. Arifin","doi":"10.1145/3404709.3404767","DOIUrl":null,"url":null,"abstract":"Osteoporosis is a disease that can be detected via the trabecular bone pattern in Dental Panoramic Radiograph (DPR). Trabecular bone pattern is difficult to see by the naked eye due to the low contrast and low resolution of DPR. This can affect the performance of osteoporosis disease detection using Convolutional Neural Network (CNN). In this paper we propose the use of Line Operator (LO) on DPR images as a preprocessing method to enhance trabecular bone pattern for CNN-based osteoporosis detection. LO is a method that can enhance line-like structures in medical images such as retina and DPR dataset. To study the effect of LO on CNN-based osteoporosis detection, the performance of non-preprocessed images, LO-preprocessed images and LO + histogram equalization pre-processed images was compared. Results showed that LO-preprocessed images give best osteoporosis detection accuracy of 0.875","PeriodicalId":149643,"journal":{"name":"Proceedings of the 6th International Conference on Frontiers of Educational Technologies","volume":"177 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Frontiers of Educational Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3404709.3404767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Osteoporosis is a disease that can be detected via the trabecular bone pattern in Dental Panoramic Radiograph (DPR). Trabecular bone pattern is difficult to see by the naked eye due to the low contrast and low resolution of DPR. This can affect the performance of osteoporosis disease detection using Convolutional Neural Network (CNN). In this paper we propose the use of Line Operator (LO) on DPR images as a preprocessing method to enhance trabecular bone pattern for CNN-based osteoporosis detection. LO is a method that can enhance line-like structures in medical images such as retina and DPR dataset. To study the effect of LO on CNN-based osteoporosis detection, the performance of non-preprocessed images, LO-preprocessed images and LO + histogram equalization pre-processed images was compared. Results showed that LO-preprocessed images give best osteoporosis detection accuracy of 0.875
基于有线算子的牙科全景x线片骨质疏松检测预处理方法
骨质疏松症是一种可以通过牙科全景x线摄影(DPR)的骨小梁模式检测到的疾病。由于DPR的低对比度和低分辨率,骨小梁模式很难被肉眼看到。这可能会影响使用卷积神经网络(CNN)检测骨质疏松症的性能。在本文中,我们提出在DPR图像上使用线算子(LO)作为预处理方法来增强骨小梁模式,用于基于cnn的骨质疏松症检测。LO是一种增强医学图像(如视网膜和DPR数据集)中线状结构的方法。为了研究LO对基于cnn的骨质疏松检测的影响,比较了未预处理图像、LO预处理图像和LO +直方图均衡化预处理图像的性能。结果表明,经lo预处理后的图像骨质疏松检测准确率最高,为0.875
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信